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ABSTRACT The Wright-Fisher model and its approxi-
mating diffusion model are compared in terms of the expected
value of a smooth but arbitrary function of nth-generation gene
frequency. In the absence of selection, this expectation is shown
to differ in the two models by at most a linear combination (with
coefficients depending only on the derivatives of the smooth
function involved) of the maximum mutation rate and the re-
ciprocal of the population size.

Consider a single diallelic locus, with alleles Al and A2, in a
monoecious population of M haploid individuals (or, alterna-
tively, N diploids, in which case it suffices to replace M by 2N
throughout). Let u and v be the probabilities of the mutations
A1 A2 and A2 - A1, respectively, and suppose that there are
no selective differences between genotypes. Then the Markov
chain

XXn (M usv)1n=0,1,2,...
with state space

IM= {M:i=0,1,2,...,M
and binomial transition probabilities

P {Xn+ (M.uv) = Xn (M u v) = i

Pd(MMt~lP)"-, al ]
where

Pi= (1-u)M + V -M
represents the successive proportions of A 1 genes in generations
0, 1, 2,. . ; it is known as the Wright-Fisher model.
A useful technique in population genetics, developed by

Fisher (1, 2) and Wright (3, 4), consists of approximating dis-
crete stochastic models by diffusion processes, the latter being
more amenable to analysis; for applications of such diffusion
approximations, see refs. 5-8. In particular, one usually ap-
proximates the Wright-Fisher model by the diffusion pro-
cess

with state space
lYt(M1? O)lt,

I = {x:O<x <1.
and backward operator

L = X(l- X) 02 +[-0X+ v(l-x)] a
2Mox2 C~~~~x

Strictly speaking, L does not, in general, uniquely determine
a diffusion process in I. There are, however, several ways to
characterize the appropriate diffusion, perhaps the most fa-
miliar of which is through the imposition of reflecting
boundary conditions at regular boundaries (9, 10). The theory
of stochastic differential equations provides an alternative
characterization (11). Observe that, if a,: > 0, the diffusion
process

iZt(scale t a0

in I, defined in terms of scaled time and mutation rates by
Zt(aH) = YMt(MIa/MI/M)I [3]

is independent of M; indeed, its backward operator is

r =2x( - X) <32+ [-ax + ,#(I- x)]1 0X2 01
Feller (12) was the first to study the problem of providing a

mathematical justification for this diffusion approximation. It
was suggested by him, and later proved by Trotter (13), that,
for each a,# > 0, K > 0, and f continuous on I,

Ex[f(X[Mt](M a/M 1/M))] - Ex[f(Zt(a.'))] - 0 [4]

asM X o, uniformly over 0 < t < K and x in IM, where [Mt]
denotes the integral part of Mt. (Here and elsewhere, the sub-
script x signifies the starting point of the Markov process oc-
curring in the expectation.) In fact, the convergence in Eq. 4
has recently been shown to be uniform over 0 < t < X (14).
Thus, by substituting Eq. 3 into Eq. 4 and replacing t by n/M,
where n = 0, 1, 2, ..., we see that, for each a,f > Oand f
continuous on I,

Ex[f(Xn (M a/M.13/M))] - Ex[f(Yn(M a/M.I/M))] 0 [51
as M co, uniformly over 0 < n < o and x in IM.
The assumption in Eq. 4 that the mutation rates be O(1/M)

as M co is necessary in order to obtain an approximating
diffusion model of the type being considered which is inde-
pendent of M. In Eq. 5, however, such an assumption is un-
necessary because one can show that, for each f continuous on
I,

Ex[f(Xn(M ,uv))I - Ex[f(Yn(M u v))I -o o [6]

as M CO, u - 0+, and v - 0+, uniformly over 0 < n <X
and x in IM; we temporarily defer the proof. Nevertheless, even
Eq. 6 gives no information concerning the error in the ap-
proximation for specified values of the parameters. The purpose
of the following result is to provide such information.
THEOREM. Assume that M > 1, 0 < u < 1, 0 < v < 1, n

>0 x belongs to IM, and f is a continuous function on I with
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six continuous derivatives. Then

| E,4f(Xn (Muv))]- Ex[J(Yn (MAuIv))]

< max(u,v) I|I)f(')II +
I

| °1f(2)II + 1 f(3)11J

+ max(u2v2) 2 .IPfi)IJ + M {
, If()IIJ [7]

where
_1 + 4M max(u,v)

1 + 2M (u + v)
and fl f(i)J denotes the maximum absolute value of the jth
derivative of f. (Note that 1 < 0 < 2 and that ( = 1 if u =
v.)

Before turning to the proof, let us consider some applications
and corollaries.
By applying the theorem with f(x) = 2x(1- x) andM = 2N,

we find that the expected nth-generation heterozygosity in the
Wright-Fisher model (for a diploid population of size N with
mutation rates u and v) differs from that in its approximating
diffusion by at most max(u,v) + 1/(4N) plus terms of higher
order. One can also compare kth moments of nth-generation
A -gene frequency in the two models by taking f(x) = xi.
When k = 1 [i.e., f(x) = x] and u = v = 0, the right side (and
therefore the left side) of Eq. 7 vanishes, confirming a rather
obvious result; however, as k increases, so does our bound.
Of course, many genetically interesting quantities associated

with the Wright-Fisher model cannot be expressed as the ex-
pected value of a smooth function of nth-generation A -gene
frequency. For example, when u = 0, the probability of fixation
of the allele Al by generation n is the expected value of the
discontinuous function f(x) = 0, 0 < x < 1, f(l) = 1, of nth-
generation A i-gene frequency. Other examples (e.g., expected
total heterozygosity, expected fixation time) depend on gene
frequencies in more than one generation; for a discussion of such
problems in this context, see ref. 15.

Because the right side of Eq. 7 is independent of n, we can
let n -X o on the left without affecting the inequality. When
both u and v are positive, this yields a bound on the difference
between the expected values of a smooth but arbitrary function
with respect to the stationary distributions in the Wright-Fisher
model and its approximating diffusion. When u = v = 0, we
find [with f(x) = x] that the probabilities of eventual fixation
of the allele A1 are identical in the two models, a well-known
and easily derived result. In the former case, Ewens (16) has
compared the stationary distribution in the Wright-Fisher
model with that in its approximating diffusion in terms of their
densities.

Observe that-Eq. 6 holds for every function f to which the
theorem applies. Because continuous functions on I can be
uniformly approximated arbitrarily closely by such functions
(in fact, by polynomials), it follows that Eq. 6 holds for every
continuous function f on I, as claimed.

Finally, we note that, of Eqs. 4-7, only Eqs. 4 and 5 have been
extended to models incorporating selection (14). However, one
can estimate the rate of convergence in limit theorems such as
Eq. 4 quite generally (cf. ref. 17).

Proof: The proof of the theorem is not difficult, so, aside from
some reasonably straightforward but tedious calculations,- we
present it in detail. Let M, u, and v be fixed throughout, as in
the statement of the theorem.

For n = 0,1,2,...,define the operator Sn on B(IM), the space
of (bounded) functions on IM, by

(Snf)(x) = ExLf(Xn (MsuV))]

and note that
SmSn = Sm+ n [9]

for m = 0,1,2, . . . ; this follows immediately from the fact that
the k-step transition matrix of a time-homogeneous Markov
chain is the kth power of the one-step transition matrix. For
each t > 0, define the operator Tt on C(I), the space of con-
tinuous functions on I, by

(Ttf)(x) = E.[f(Yt(Muv))]
and note that

Ts8t = s+t

[10]

[11]

for all s > 0; this is a consequence of the Chapman-Kolmogorov
identity for the transition function of a time-homogeneous
Markov process (10). [The fact that each Tt is indeed a bona fide
operator on C(I)-i.e., that it maps C(I) into C(I)-can be
deduced from ref. 10.] By Eqs. 9 and 11,

SnTof- STnf
n-1

= Z (Sn-kTkfJSn-k-ITk+ lf)
k=O

n-i
= Z (Sn-k-ISITkf-Sn-k-1T1Tkf)

k=O
n-I

= Z Sn-k-i(Si - Tj)Tkf
k=O

[12]

for n = 1,2,3,. .. and f in C(I). [We do not distinguish between
functions in C(I) and their restrictions to IM. ]

Denote the maximum absolute values of functionsf in B(IM)
and g in C(I) by if JIM and Jhg J. Applying the triangle in-
equality to Eq. 12 and noting that both So and To are identity
operators and each Sn is a contraction operator [i.e., IISnfhIM <
Ilf hIM for all f in B(IM)], we obtain

[13]iiSnf - Tnf hiM < n-I iI(SI - TI)TkfiM
k=O

for n = 1,2,3,. . . and f in C(I).
Let Cm(I) be the subspace of C(I) consisting of those func-

tions with m continuous derivatives on I. We will need the fact
that

lim iit-uITtf-f -Lf || = 0
t-o+

[14]
for every f in C2(I), where L is the backward operator defined
by Eq. 2. The proof of this result depends on the characteriza-
tion of the diffusion process in terms of which I TtIt o was de-
fined; consult Lemma 9.3.1 of ref. 18 for details. It will later be
seen that there is a close connection between Eq. 14 and the
Kolmogorov backward equation; for now, it suffices to note
that, by Eqs. 11 and 14,

a' (Ttf)(x) = (TtLJf)(x) [15]
for j = 1,2,3,..., f in C2i(I), x in I, and t > 0.
Given g in C6(I) and x in IM, an application of Taylor's

theorem yields

(Sig)(x) = g(x) + E Ex[(Xi(Mu v) - x)J]g(j)(x)/j!
j=i

+ wi Ex[(XI(Muv) -x)6]llg(6)11/6!, [16]
where Iwi < 1 and g(j) denotes the jth derivative-of g; in view
of Eq. 15, a second application of Taylor's theorem results in

(Tig)(x) = g(x) + (Lg)(x) + (L2g)(x)/2 + W2 hiL3gjh/6,
[17]
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where w21 < 1; here we are using the facts that To is the
identity operator and each Tt is a contraction operator. By Eq.
1, we can evaluate the moments in Eq. 16 in terms of the first
six moments of the binomial distribution (the central moments
of which are actually easier to compute); we can also calculate
the coefficients determining the fourth- and sixth-order dif-
ferential operators L2 and L3. Upon subtracting Eq. 17 from
Eq. 16 and noting the resulting cancellations, we obtain

where

L =L + 2] (1-2x)8 .

To justify Eq. 22 as well as what follows, one should check that
the first t-derivative and the first two x-derivatives of ¢(j) are
jointly continuous (cf. ref. 19). Now let ili)(t,x) =.+(f)
exp(Xit) for t > 0 and x in I, and note that Eq. 22 becomes

IlSig - TigilM < E -yj llg()ll
J=l

[18]

for every g in C6(I), where Y1,72, . . . ,Y6 are certain polyno-
mials in the three variables max(u,v), u + v, and 1/M.

Suppose for the moment that, for j = 1,2,3,. . . and t 2 0,

Tt maps CJ(I) into CJ(I) [19]

and

II(Ttf)Wjt ' exp(-Xjt) Ijfj'j11 [20]
for every f in CJ(I), where

2M) + j(u + v).

Then, from the estimates 13, 18, and 20, together with the in-
equality

n-1i
E2 exp(-Xjk) < E exp(-Xjk)
k=O k=O

- [1 -exp(-X)]-
<1+Ii-',

we conclude that
n-l 6

k=O j= 1

6 n-i
< E yj Y, exp(-Xjk) llP0'11

j=1 k=O
6

< E Yj(1 + Xjl)|i(})||)1 [21]

for n = 1,2,3,... and f in C6(I). (If u = v =0, then XA = 0; but
in this case yI = 0, so the first term of the last sum in Eq. 21 is
absent.) Using the explicit expressions for yj (not given) and Xj,
i = 1,2.. ,6, one can check that the right side of Eq. 21 cannot
exceed the right side of Eq. 7. By substituting Eqs. 8 and 10 into
the left side of Eq. 21, we therefore arrive at the conclusion of
the theorem.

Thus, to complete the proof, it suffices to verify Eqs. 19 and
20. Because Eq. 14 holds for every f in C2(I), it follows from
Theorem 1 of ref. 19 (or from the argument of Lemma 2 there)
that Eq. 19 holds for j = 1,2,3,... and t 2 0. As for Eq. 20, we
can argue as follows. Fix.a positive integer j. Givenf in Ci+ 2(1),
let q(t,x) = (Ttf)(x) for t > 0 and x in I. By Eq. 19, 4(t,-)
belongs to C +2(I) for each t > 0, so, by Eqs. 11 and 14, 0
satisfies the Kolmogorov backward equation

a
-a ==L4, k(0,)=f.
at

Differentiating j times with respect to x and denoting i4J/Oxi
by 0(j), we obtain

at O(1 = Lj(P) - X1(), ,(i)(o, .) = f(j), [22]

a
{(i) = Ljit(j),a9t 4p(j)(o, .) = f(j).

Therefore,
[23]

for each t 2 0 by the weak maximum principle [cf. Theorem
6.3.1 in ref. 20, a slight modification of which is sufficient here
when applied to ODX) and -(j); the point is that if h in C2(I) has
its maximum at x in I, then (Ljh)(x) < 0, even if the maximum
occurs at 0 or 1]. We conclude from Eq. 23 that, for each t >
0, Eq. 20 holds for every f in C>+ 2(I) and thus (by a simple
argument) for every f in CJ(I).
We thank Prof. T. G. Kurtz for suggesting the problem and Prof. T.

Nagylaki for helpful communication.
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