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Abstract 

Let w, w,2 and w2 be the fitnesses of genotypes A,A, AlA2 and A2A2 in an 
infinite diploid population, and let p. be the A, gene frequency in the nth 

generation. If fitness varies independently from generation to generation, then 

pn is a Markov process with a continuum of states. If E[ln(w/w2,)] <0 for 
i = 1,2, then there is a unique stationary probability, and the distribution of p. 
converges to it as n - oo. 

GENETIC MODELS; RANDOM ENVIRONMENTS; MARKOV PROCESSES; ERGODIC 

THEORY 

1. Introduction 

Consider an infinite monoecious diploid population with two alleles, A, and 

A2, at some locus and Al gene frequency pn in the nth generation. If mating is 

random, and the genotypes A,A,, AIA2 and A2A2 have fitnesses wi, w12 and w2, 

then pn satisfies the classical difference equation 

pnW + pnqnWi2 
pn+ 2Pn 2 

p2nWi + 2pnqnW12 + q:nW2 

(q = 1 - p). We shall assume, throughout the paper, that all fitnesses are strictly 
positive, and 0 < po < 1. Without loss of generality, we take w12 = 1. 

The trajectory of pn when fitness is constant over time is well understood (see, 
for example, Ewens (1969)). Recently, several investigators have attempted to 
model random temporal variation in the environment by introducing random 
fitnesses w,n and w2n- We mention the work of Gillespie (1973), to whom we owe 
our interest in this subject, and a paper of Karlin and Lieberman (1974), which 
contributes a variety of new results and reviews a number of earlier studies. The 
main thrust of this work is that random variation in fitness greatly enhances the 

ability of this model to interpret polymorphism. 
Having determined that w, = (w,l, w2n) is to be regarded as a stochastic 

process, it remains to specify its properties. A rather natural assumption is 

stationarity, but we shall impose the stronger condition that the random vectors 
w,, n - 0, are independent and identically distributed (and independent of po). 
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Their common distribution is denoted n (n(A) = P(w, E A )). The dependence 
between win and w2, is unrestricted. It is assumed that, for some E >0, 

(1) E(exp(e l lnw,n, ))< , i = 1,2. 

This is certainly true if wi, is bounded away from 0 and :c. 
The assumption that the random vectors w, are independent and identically 

distributed implies that {p,, n -0} is a Markov process in (0, 1) with stationary 
transition probabilities. Let J-(po) be the distribution of po, and let => denote 

convergence in distribution. The purpose of this paper is to prove the following 
ergodic theorem. 

Theorem. If E(lIn w,) < 0 and E (ln w2) < 0, then {p,, n 0} has a unique 
stationary distribution, i. For any Sf(po), pn tz as n -, . 

Gillespie (1973) made the fundamental observation that the behaviour of pn 
near 1 (0) hinges on the sign of E(ln w,n) (E(ln w2n)). Clearly E(ln win)< 0 is not 
inconsistent with E(w,) > 1. Thus both conditions E (ln wn) < 0 of the theorem 
can be satisfied, so that a polymorphism is maintained, even though E(wln)> 1 
and E(w2n) < 1, a situation which would produce fixation of A, in the absence of 
environmental variation. Karlin and Lieberman (1974) indicate that convergence 
of P(pn) is a very general phenomenon, even for dependent fitness processes 
{w,, n - 0}, but they give no proofs. 

2. Two lemmas 

Let X,, be the Markov process X, = ln(p,/q,), with state space R = 

(- , c). We begin the proof with two lemmas. 

Lemma 1. For any A with I A I sufficiently small, and any initial state x E R, 
the sequence {Ex (exp (AXn,)), n 0} is bounded. 

This implies that {fl(X, I Xo = x), n > 0} is tight, and 

Ex (lim inf exp (AXn )) < oc, 

by Fatou's lemma. (We write lim inf an instead of lim infn.a,n.) Consequently, 

(2) lim inf Xn < c 

and 

(3) lim sup Xn > - o 

almost surely (a.s.). Thus we can see already that fixation of either allele has 

probability 0. The proof of Lemma 1 for A >0 depends only on (1) and 
E(ln w,,)<0, hence (2) holds under these conditions. Lamperti's ((1960), 
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Theorem 3.1) methods can be adapted to show that (2) holds even when 
E (ln w,,) = 0, provided that var (In w,,) > O and [ In wi, | K for some constant 
K and i = 1,2. 

For x ER =[-oc,oo], let 

(4) 8(x) = (x, w)= In (pw + q 
,qW2 + p 

' 

where x = In(plq). Then 

AX. = X.+,- X. = 8(X., w,), 

P(AX, E B IX = x) = n(6(x) E B), 

and 

(5) E(f (AXn)lXn = x)= f(8(x, w))n(dw) 

for x ER. 

Proof of Lemma 1. For fixed w, 6(x, w) is monotonic in x, with 8(- oo, w) = 
- In w2 and 8(o) = In w,, hence 

(6) 1 (x, w) --max{|ln wl , In w2 }. 

In view of (5), 

(7) E(eElaxX = x)- = < K, 

where K = f e'llnIl (dw)+ f e ln W21 n(dw) is finite by (1). Also (5), (6) and the 

dominated convergence theorem imply 

(8) E(AX I X. = x)-- a 

as x --oo, where a = fln w, I(dw)< O. 
The remainder of the proof for A > 0, which we now present, depends only on 

(7) and (8), hence does not require fin w2H(dw)< 0. The proof for A < 0 is 

similar, and does not require fin w Il(dw)< 0. 

Taylor expansion yields eY = 1 + y + 2-ly2eby, where Oc? b 1, hence, for 

A <e, 

E(eA^Xn I Xn = x)= 1+ AE(AX, X, =x) 
(9) 

+ 2-'A2E((AXn)2eAI^'X I Xn = x). 

In view of (8), there is a constant, k, such that E(AX,n X, = x) - 2-'a for x = k. 
Moreover, 

2-' (AX )2 = (e -A )-2e (e-A)lx, 
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so it follows from (7) that the last term on the right in (9) is at most A 2(E - A)-2K. 
Therefore 

E(e "AxA I X, =x) < 1 + 2-'aA + A 2(E -A )-2K 

(10) 
aA 

for x >- k. Since a < 0, there is an e' E (0, e ] such that 0 < a < 1 for 0 < A < '. 
It follows from (10) that 

E(e "Xt- X, =x) ae Ax 

for x ' k. As a consequence of (7), 

E(e "X-+ X, =x) KeAx 

Ke ̂ k 

for x ' k, hence 

E(e I X, = 
x) a ,e + KeAk 

for all x E R. Therefore 

E, (e x,) <a,Ex (ex ) + Ke k, 

and thus, by induction, 

Ex (ex-) < ae Ax + (1 - a )-KeAk. 

This completes the proof. 

For x E R, let 

P+(x)= I((x)>O) and P-(x) = n(8(x)< ). 

Lemma 2. If cE (-oo,xc], and P+(x)>O for all xE(-oo,c), then 

limsupXn, c a.s. If c E[- oo,o), and P-(x)>O for all xE(c,oo), then 
liminfXn < c a.s. 

The first statement of Lemma 2 can be rephrased as follows. If P(X,n+ > 
x X, = x)> 0forallx E (- o, c), then P(X, > x i.o.)= 1 forall x E(- o,c). 

Proof. We begin by showing that, for any y E R and y E R, 

(11) lim inf_,, Hn((x) > y) In(8(y) > y), 

i.e., HI((x)> y) is a lower semicontinuous function of x E R. Let x(u)= 1 if 
u > y and (u) = 0 if u < y. Since 8(x, w) is continuous in x for each w, X is 
continuous except at y, and X(y)=0, it follows that x(8(x,w)) is lower 
semicontinuous in x. But 
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((8(x)> y) = x(8(x, w))n(dw), 

so (11) follows from Fatou's lemma. 
The two statements of Lemma 2 are symmetric, so we consider only the first. 

Let y E(-oo,c) be given. Since P+(y)>O, there is a y = y >0 such that 
b = II(8(y)> y)> O. Since HI(8(x)> y) is a lower semicontinuous function of x, 
there is an = -y E (O, y/2) such that nI(8(x)> y)- b-/2 if x EI = 

(y - 77, y + 7). Now X E Iy and AX, > y imply Xn+i > y + r, so 

P(Xn+, > y + 7 I Xn )- b/2 

for X, E Iy. It follows (see Theorem 9.5.2 of Chung (1974)) that 

[X, E Iyi.o.]- [X, > y + 71 i.o.] 

has probability 0. But lim sup Xn E Iy implies this event, so 

P (limsup X E Iy) = 0. 

According to the Lindel6f theorem, there is a countable set, S, such that 

UyesIy (-o, c). Hence 

P(-oo < limsup X, <c) = 0. 

In view of (3), the proof of Lemma 2 is complete. 

The remainder of the proof of the ergodic theorem involves consideration of 
two cases. 

Case 1. P(x) > for all x E R, or P-(x)> for all x ER. 
Case 2 is the residual case. 

In view of Lemma 2, lim sup X, = oo a.s. or lim inf X, = - oo a.s. in Case 1. This 
case is treated in Section 3. The remaining sections treat Case 2. It will emerge 
that, in this case, both lim sup X, and lim inf X, are finite a.s. 

3. Case 1 

Since the two possibilities under this case are symmetrical, it suffices to 
consider the first, P(x)> 0 for all x E R. By Lemma 2, lim sup X, = oo a.s. 

Consequently, for any y E R, the random variable N defined by 

N = min{n '0: Xn, y} 

is finite a.s. 
Let U be the transition operator of the process {X,}, 
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Uf(x)= E(f(X+,,,) X =x) 
(12) 

= f( (x , w))n(dw) 

for f bounded and measurable on R. Its iterates, Uk, satisfy 

Ukf(X) =E(f(Xn k) ( In) 

a.s., where ~n is the a-field generated by Xo, * , X,. Differentiating (4) with 

respect to x E R, we obtain the important equality 

(13) '(x) = pq(ww2- 1) 
(pw1 + q)(qW2 + p)' 

Hence 

(14) 8'(x)> - p 
(pwi + q)(q2 + p) 

> -1. 

Consequently, x + 6(x, w) is an increasing function of x for every w. It follows 
from (12) that U maps non-decreasing functions into non-decreasing functions, as 
does Uk. 

Suppose, henceforth, that f is bounded, non-negative and non-decreasing. 
Since f _ 0, 

E(f (X,))_ E(f (X), N < n) 

(E(Y, A)= E(YIA), where IA is the indicator of A) 

= E(f(X,), N= j) 
j=0 

= E(E(f (X,), N = j )) 
j=o 

= E(E(f(X,)l ~j), N= j) 
j=0 

j=0 

E(U Nf(XN) N n) 

E (U "-Nf(X ), Nt h n), 
since XN y. Fatou's lemma Un (y and) N a.s. the n ), 

since XN > Y. Fatou's lemma and N < Xo a.s. then yield 
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(15) lim inf E(f (X )) > lim inf U"f(y). 

This holds for every y E R. Note that the quantity on the right is a non- 

decreasing function of y. Let 

U?f = limy,.lim inf,,,. U"f(y). 

It follows from (15) that 

(16) lim inf E(f (X,)) > U.f. 

This is valid for any f(Xo), and U'f does not depend on S(Xo). 
For any n > k ? 0, 

E(f (X ))= E(Uf(X_-k)) 

= (U(kf(X.-k), Xn-k - y) 

+ E(Uf(X-k), X-k > y) 

-Ukf(y)+ ll f lM(y), 

where I| f = sup,E I f(x) and 

M(y) = sup P(X > y). 
j -0 

It follows that 

lim sup E(f (X )) < Ukf(y) + J f IIM(y) 

for all k - 0, so 

(17) lim sup E (f (X,))< lim inf U"f(y) + J| f IM(y). 

Suppose now that Xo = x a.s., for some constant x. Letting y -oo in (17) and 

noting that M(y) >0 as a consequence of Lemma 1, we obtain 

lim sup E. (f (Xn)) < Ua7f. 

In combination with (16), this yields 

(18) lim E(f (Xn)) = Uf 
n --oo 

for all x E R and all bounded, non-negative, non-decreasing f. 
Since { (Xn I Xo = 0), n _ 0} is tight, there is a subsequence that converges to 

a probability v. By (18), with x = 0, U'f = ffdv if f is bounded, continuous, 
non-negative, and non-decreasing. If probabilities v, and v2 satisfy ffdvi = f dv2 
for all such functions, then v, = v2. Hence (18) and tightness of {S(Xn I X = x), 
n ' 0} imply that Xn = v for all initial states x (Breiman (1968), Corollary 
8.16), hence for all initial distributions S(Xo). 
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If f is bounded and continuous, Uf is too, hence 

E(f (X.+,)) = E(Uf(X )) 

- Ufdv 

as n ->oo. But E(f(X,,,+))- f fdv, so f Ufdv = f dv for all bounded continu- 
ous f. This implies that v is stationary. If v' is any stationary distribution, take 

f(Xo) = v' and note that v' = (Xn) => v, as n ---o, so v' = v. Thus v is the 

unique stationary distribution of {Xn, n -0}. Our results for X, translate 

immediately into comparable results for pn. 

4. Case 2, preliminaries 

Note first that P( - oc) = I( - In w2 > 0)> 0, since E(ln w2)< 0. Since P+ is 

lower semicontinuous, P+(x)> 0 for x in some neighbourhood of - oo. On the 
other hand, in Case 2, P'(x)= 0 for some x E R, hence 

a =sup{y: P+(x)>0 for all x < y} 

is finite, as is 

a =inf{y: P-(x)>0 for all x > y}. 

We say that A implies B a.s. if P(A - B)= 0. 

Lemma 3. P(a +) = 0, (- oo, a +) is stochastically closed, and Xo < a+ implies 
lim sup X = a+ a.s. Similarly, P-(a-)= , (a-, oc) is stochastically closed, and 
X, > a- implies lim inf Xn = a- a.s. Finally, a- a +. 

Proof. There is a sequence x, such that xj ' a+, P+(xj)= 0, and x; - a+ as 

j - oc. But P+ is lower semicontinuous, so P(a +) = 0, or 8(a +, w) ' 0 for almost 
all w. Thus a+ + (a+, w)- a+ a.s. But x + 6(x, w) is a strictly increasing 
function of x, so, for almost all w, x + 8(x, w)< a+ for all x <a+. Hence 

P(Xn+I < a+l X = x) = 1 for x < a+, and (- o, a+) is stochastically closed. It 
follows that X0 < a implies lim sup Xn - a a.s. But P(x) > 0 for x < a , so 

lim sup X, - a + a.s. by Lemma 2. Thus X0 < a+ implies lim sup Xn = a+ a.s. The 

assertions concerning a- hold by symmetry. 
Since P+(a+) = 0 and P-(a-)'= O, we have 8(a+, w) 0 and 8(a -, w) - 0 for 

almost all w. Suppose that a+ < a-. In view of (13), we must have wlw2- 1 a.s., 
hence In w, + n w2=>O a.s., and E(ln w)+. E(ln w2)-0. This, however, is 
inconsistent with our assumption that both of these expectations are strictly 
negative. Consequently a+ = a-. This concludes the proof of Lemma 3. 

We shall distinguish two subcases of Case 2. 
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Case 2a. a > a- 

Case 2b. a+= a- 

These are considered in the two subsequent sections. Let I = [a-, a+]. It follows 
from Lemma 3 that (- oo, a ] and [a-, oc) are stochastically closed, hence their 

intersection, I, is too. Moreover, in Case 2a, the lemma implies that Xn E I for 
some n, thus for all sufficiently large n, a.s. In Case 2b, I reduces to a single 
point, a, and we shall see that limn,.Xn, = a a.s. Hence, in either case, the 

limiting distribution of Xn is concentrated on I. 

5. Case 2a 

Since 8(a-)'O and 5(a+)=O a.s., (13) shows that w,w2 1 a.s. Moreover 

w,w2=1 a.s. is inconsistent with E(lnw,)<O, i=1,2, so I(8'(x)<0)= 
n(wiw2<1)>O. Since -1<8'(x)= O, we have 0<1+8'(x)- 1. If f' is 

bounded, then 

(dldx)f(x + 5(x)) = f'(x + 8(x))(1 + 8'(x)) 

is bounded, so differentiation and integration can be interchanged in (12) 
yielding 

(Uf)'(x)= ff'(x + (x))(1 + 8'(x))dH. 

Let f II = supxE I f(x) , where I = [a -, a+]. As noted previously, I is stochas- 

tically closed, hence 

|(Uf)'(x) l llf'l (1+ f'(x)dn) 

for x E I, and 

11 ( Uf)'|| ' a 11 f' II, 

where 

a = max,E (l + 
J'(x)dn). 

By induction, 

||( Un f)' II a n || f' ||. 

But fS'(x) dII is continuous and strictly negative on the compact interval I, so 
a< 1, and I|(Uf)'|IIO0 as n -+oo. Now supx, Uf(x)- supxe,f(x), so, by 
induction, s, = supxe, U"f(x) is a non-increasing sequence. Similarly, in = 
infxL, U"f(x) is non-decreasing. But 
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s, - in - (a - a-)I (Unf)'l, 

so Sn and in converge to the same limit, which we denote U-f. Since, for each 
x E I, Uf(x) and UWf are in [i, . n], we see that || f Uf - _Uf I 0 as n -*x. 

Suppose now that 5(Xo) is unrestricted. By Lemma 3, Xn E I for some n a.s., 
so N = min{n: Xn E I} is finite a.s. As in our treatment of Case 1, 

E(f(Xn))=E(Un-Nf(XN), N- n)+ E(f(X), N > n). 

Since XN E I, the first term on the right converges to U'f as n -> c. The second 
term converges to 0. Hence E(f(Xn))-> U7f, for any :j(X0) and bounded 
function f with bounded derivative. The assertions of the theorem follow easily 
from this. 

6. Case 2b 

It suffices to show that Xn -> a a.s., where a is the common value of a+ and 
a-. The asymptotic behavior of pn in this case was described by Karlin and 
Lieberman (1974). 

We can, without loss of generality, assume that Xo = Xo a.s. and Xo < a. Let 

Yn Yn(a)= -(a Xn ), 

where 0 < a < 1 will be determined subsequently. According to Lemma 3, lim 
sup Yn = 0 a.s. We shall show that 

(19) E (A Yn(a) Y,(a) = y)-> 0, 

if y <0 is sufficiently close to 0. Lamperti's (1960) Theorem 2.2 then yields 
lim Yn = 0 or lim Xn = a a.s. (Lamperti's assumption that the process is 

non-negative is unnecessary.) Thus it remains only to establish (19). 
If Yn = y = -(a -x), then 

A Yn/I y = 1 - (1 + AX,(x - a)- 1). 

(The quantity 1 + AX, (x - a)-' is a.s. positive.) Hence it is sufficient to show that 

(20) f ( + (x)(x - a)-')dnH 1 

for x < a sufficiently large. Since P+(a) = 0 and P-(a) = 0, we have 8(a, w) = 0 
for almost all w. Hence 

8(x)(x - a)- _< sup 8'(y) 
yER 

_ max {wI w2 - 1, 0} 
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by (13), and the integrand in (20) is bounded by exp(a l n wiw2 ), which is 

integrable for a < E/2. Thus the dominated convergence theorem implies that 
the integral in (20) converges to g(a) = f(1 + 8'(a))"d f as x T a. Consequently, 
we need only show that g(a) < 1 for some a. Granting, for the moment, that 

(21) g(Ca) --/, exp [ In(l + 8'(a)) d ] 

as a 1 0, it remains only to prove that 

(22) d= fIn (1 + '(a))dIH <0. 

Let ; = s(w)= n (1 + 8'(a, w)). To establish (21), we must show that (g(a)- 
1)a- '-fS dH as a I 0, or 

(23) limf(ea-l)a-ldfH= f dI. 
a 10 

The integrand in (23) equals 'f'e""adu, which clearly decreases to ; as a I 0. 
Moreover, the integral in (23) exists for a - e/2. Hence (23) follows from the 
monotone convergence theorem. 

We shall now complete the proof by establishing (22). In view of (4), 6(a) = 0 
a.s. implies that (w, - l)p = (w2 - 1)q a.s. (where a = In (p/q)). Let this quantity 
be denoted z, so that w, = 1 + (zip) and w2 = 1 + (z/q) a.s. Substituting into (13), 
we see that 

z 
&'(a ) = z 

or 

w-1 wI2-1 
(24) -'(a)= 1 w 2+ 

WI + r w2 + S 

a.s., where r = q/p and s = p/q. If u > 0 and x is sufficiently large that (ex - 1) 
(e +u)-'> -1, let 

f(x) = In[1 +(ex 1)(ex + u)-']. 

By (24), 

d = f(ln w,) dl= f f(lnw2) dn 

(In w1 and In w2 belong a.s. to the domains of definition of f, and f, respectively, 
as a consequence of (14)). It is easy to show that fu(x)> 0 and f:(x)< 0 if u = 1, 
i.e., fu is increasing and concave on its domain if u _ 1. Hence, if r = q/p - 1, 
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d ffr(lnw,)dn<fr(lln w,idn 

by Jensen's inequality, 

< f(O) 

=0. 

A similar calculation using f, shows that d < 0 if s = p/q ? 1. Thus (22) is valid in 

any case, and the proof of the ergodic theorem is complete. 
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