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PREFACE 

In 1977 and 1979 the Mathematical Psychology Proseminar at the University of 
Pennsylvania was a one-semester course in Linear Systems Theory. I lectured on the 
general theory of linear systems, and several colleagues presented applications to 
selected psychological and psychophysiological problems. This article is a revision of 
my lecture notes. I am extremely grateful to E. S. Krendel, C. R. Gallistel, J. 
Nachmias, E. N. Pugh, and B. S. Rosner for their lectures and other contributions to 
the course, and to my thinking on this topic. 

Both graduate and undergraduate students enrolled in the course. All had had at 
least a year of college calculus. No additional mathematical preparation was 
assumed, though I am certain that students with additional preparation (e.g., a third 
semester of calculus, or courses in linear algebra or physics) found it useful. 
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2 M.FRANK NORMAN 

In these lectures, certain statements are called “theorems,” and the arguments 
supporting these statements are called “proofs.” These terms are not meant to 
indicate that the exposition is mathematically rigorous. It is occasionally rigorous, 
but not consistently so. 

Since few psychological applications of linear systems theory are discussed in this 
article, the reader will surely want to look elsewhere for illustrations of how these 
ideas are used in psychological models. The books of Harris (1980), McFarland 
(1971), Milsum (1966), and Stark (1968) are of interest in this connection, as are the 
Journal of the Acoustical Society of America and Vision Research. Let me say at the 
onset that I doubt that purely linear models will take us very far in the analysis of 
psychological phenomena. However, useful models may have linear components 
(hidden, perhaps, behind thresholds) or linear approximations (for, say, restricted 
ranges of inputs). Moreover, there is another reason for including “linear systems 
theory” in the psychological curriculum: the ideas grouped under this heading are so 
pervasive as to represent an important component of the language and culture of 
science. 

PART A. ANALYSIS IN THE TIME DOMAIN 

As a general reference on time domain analysis, I recommend Chapters 1 and 3 of 
Schwarz and Friedland (1965). Chapters 21-25 of Feynman, Leighton, and Sands 
(1963) show how linear systems ideas arise in elementary classical physics. 

Lecture 1. RC Circuits 

Let’s begin with an example. Consider an electrical circuit containing a resistance, 
a capacitance, and a voltage source. Such a circuit is diagrammed in Fig. 1. R and C 
are constants, but the impressed voltage, x(t), may vary with time, and this causes 
temporal variation in the voltage, y(f), across the capacitor. 

Our objective is to obtain a formula that expresses the “output,” y, in terms of the 
“input,” x. The standard method of doing this involves setting up a differential 
equation involving x and y. We begin with the identity 

u13 = vi2 + V23r 
. 

v(tl = “I1 = voltage aCrOSS capacitor 

FIG. 1. An RC circuit. 
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which is a consequence of Kirchofl’s second law. Replacing vi3 and u,, by x(t) and 
y(t), respectively, we obtain 

44 = At) + u23. 

Now vz3 is the voltage across the resistance. According to Ohm’s law, 

V 23 = i(t)R, 

where i(t) is the current in the circuit at time t. Thus 

x(t) = y(t) + i(t)R. (1) 

I will now show that i is proportional to y’ = dyldt. Let 

q(t) = charge on capacitor at time t. 

Then 

Y(t) = sWlC* 

(Think of y as the water pressure at the bottom of a vertical pipe containing q gallons 
of water. Larger pipes yield smaller pressure.) Thus 

y’(t) = q’(h/C 

or 

q’(t) = Cy’(t). 

But 

so 

q’(t) = i(t), 

i(t) = Cy’(t). (2) 

Thus i is proportional to y’, as claimed. 
Substitution of (2) into (1) yields 

x(t) = y(t) + RCy’(t). 

Interchanging the two sides of this equation, suppressing t, and introducing the new 
parameter 

b=RC, 
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called the time constant of the circuit, we obtain 

by’ + y = x. (3) 

This is the differential equation that we must solve in order to express output, y, in 
terms of input, x. 

Solution of (3) 

We begin by observing that we know a solution of (3) in one special case, namely, 
x(t) s 0. In that case, (3) reduces to by’ + y = 0, and 

p(t) = epub 

is a solution. In other words, 
bp’ + p = 0. 

The fact that this equation is so similar to (3) suggests that the unknown solution, y, 
of (3) may bear some simple relationship to p. Perhaps the ratio, y/p, is a simple 
function, or, at any rate, satisfies a very simple differential equation. Using the 
“quotient rule” to calculate its derivative, we obtain 

(y/p)’ = py’ -yp’ 
P2 

=p(-b-‘y + b-lx) - y(-b-‘p) 

P2 

=-b-‘py+b-‘px+b-‘yp 

P2 

Cancelling b- ‘py in the numerator, we get 

(Y/P)’ = b-$x/p* 

or 
(Y/P)’ = b-‘x/p. 

This differential equation is very simple indeed, since the right hand side is a 
known function of t. Integrating both sides from t, to t, we obtain 

f (Y(u)/P(u))’ du = b-’ f (x(u)/~@)) du. 
‘0 ‘0 

Hence, by the fundamental theorem of calculus, 

yW/pW - y(tcJ/&) = b-’ j’ (xtu)/p(u)) due 
to 
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Therefore 

Y(O = PO> [ YwPthJ + b- ‘f @(UYP@)) du]. 
to 

(4) 

This formula expresses y in terms of the input function, x, the known function 
p(t) = ePUb, and the initial value y(tJ. The differential equation does not determine 
the initial value. We can choose it as we please to describe different initial voltages 
across the capacitor. However, once y(tO) is specified, all other values of y(t) are 
determined and are given by the above formula. 

The voltage inputs, x(t), that we might actually apply to an RC circuit have a 
definite onset time, t,, illustrated in Fig. 2. Clearly t, can be described as the largest 
time with the property that the input is “off’ at all earlier times (x(t) = 0 for all 
t ( tJ. One can also imagine a null input that never comes on (x(t) = 0 for all t, 
hence t, = co), and inputs, like x(t) = sin t, which have been on since t, = ---co. 

For inputs with finite onset times, we assume that there is no voltage across the 
capacitor before input voltage onset or, equivalently, t, > t,. This condition yields the 
initial value y(t,,) = 0 for all t, < t,, so (4) reduces to 

v(t) = ~-‘pWf W>~(u>)du 
to 

for t, < 1,. But x(u) = 0 for u < t,, so we change nothing on the right if we extend the 
limit of integration from t, down to --co. Thus 

YW = b-‘p(r) f (-+)/P(U)) du 
-co 

or 

~(4 = b- I 1’ (P~>/P@)> x(u) du. 
-a, 

x(t) 

o- t,4vwet time 
t 

FIG. 2. Onset time, l.r 
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PW 
e-Ub 

- -,-c-d/b 
P(U) e-Jb 

so 

y(t)=b-l J e-(f-u)‘bx(u) du. (5) --oo 
This formula gives the voltage “output” of an initially uncharged capacitor for an 
input voltage with finite onset time. 

EXAMPLE: UNIT STEP INPUT. Suppose that 

x(t) = 1, if t > 0, 

= 0, if t < 0. 

This is called the unit step input, and the corresponding output, y, is the step 
respor;se. According to (5), y(t) = 0 for t < 0. For t > 0, 

y(t) = bF’eeub J 
f 

eJbx(u) du 
--a\ 

= b- le-l/b J ’ elJb du 

0 

=b-lemObeu’h ’ 

l/b 0 

=e -f/b Ub-1) 
(e 3 

so 

y(t) = 1 - eeUb 

for r 2 0. This function is graphed in Fig. 3. Eventually the entire impressed voltage 
appears across the capacitor. 

Infinite Onset Times 

For theoretical purposes, it is also necessary to consider inputs with infinite onset 
times. The null input (x(t) = 0 for all t, t, = co) presents no difficulty. We have 
assumed that there is no voltage across the capacitor before the input voltage is 
applied. In the case at hand, this implies y(t) = 0 for all t, which also follows from 
(5) if we take x(u) = 0 on the right. Thus (5) is valid for t, = co as well as for 
finite t,. 
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FIG. 3. Step response of an RC circuit. 

Inputs that have been on since t, = --co require more careful consideration. It is 
easy to concoct an input of this kind for which the integral on the right in (5) is 
infinite, as you will see in the third exercise on p. 8. Fortunately, the integral is finite 
for a variety of functions, like x(u) = sin wu, that are of special interest to us. It can 
be shown that, whenever the integral is finite, the function, y(t), defined by (5) is a 
solution of the differential equation, (3), of the RC circuit. It is, in fact, the unique 
solution satisfying an appropriate “initial condition,” the precise form of which need 
not concern us. (For the record, the condition I have in mind is euby(r) --) 0 as 
t -+ -co.) Thus, even for certain “theoretical” inputs with t, = -oc), we can regard the 
function y(t) of (5) as the corresponding “ideal” output of the RC circuit. 

In summary, (5) gives the input-output relation for the RC circuit, regardless of 
the value of onset time, t,. 

EXAMPLE: SINUSOIDAL INPUT. We shall see that it is very important to know 
how a system of this kind responds to sinusoidal inputs. Thus, consider x(t) = sin wt, 
where w  is frequency in radians/unit time. This input has t, = --co. According to (5), 
the output is 

y(t) = b-‘emyb \’ e*b sin wu du 
---03 

= b-‘eeub lim 
J‘ 

’ e”lb sin wu du. 
T--m T  (6) 

We shall always interpret integrals with infinite endpoints as limits of integrals with 
finite endpoints. Consulting a table of indefinite integrals, we find 

5 eax sin bx dx = eax 
(a sin(bx) - b cos(bx)) 

a* + b2 
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Taking “a” = b-’ and “b” = w, and subtracting the value of this expression at x = T 
from its value at x = I, we obtain 

’ sin wt - 0 cos ot) 
sinoudu=eUb(b- b-2+02 

’ sin wT - w cos wT) 
-eTfb (b- b-2+w2 . 

Now eTlb -+ 0 as T-+ -co, and sin wT and cos wT oscillate between + and -1 as 
T-, -co. Thus the entire second term on the right converges to 0 as T-+ -a~. 
Therefore 

’ sin wt - w cos wt) 
sinwudu=eub(b- b-2+W2 . 

Plugging this into (6) and cancelling eUb, we obtain 

v(t) = b-fzw2 (b-l sin wt - w  cos or). 

As we shall see later, the right hand side represents a sinusoid with frequency w. 
Thus a sinusoidal input produces a sinusoidal output of the same frequency. Input 
and output differ only in amplitude and phase. 

Exercises 

Find t, and y(t) for inputs (a), (b), and (c). 

(4 x(u) = 1, if 0 < u < c, 

= 0, if u < 0 or u > c. 

When calculating y(t), consider separately the cases t < 0, 0 < t < c, and t > c. 

(b) x(u) = cos wu. 

(cl x(u) = eku. 

Consider separately the cases k > -b-l, k = -b-l, and k < -b-l. 

Lecture 2. From RC Circuits to Linear Systems 

In Lecture 1 we obtained the following basic formula for the voltage, y(t),.across a 
capacitor in an RC circuit as a function of the input voltage, x(r): 

y(t) = b-’ It e-(t-U)‘bx(u) du. 
-m 
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I prefer not to have to write 

b-le-(t-uYb 

again and again, so I am going to introduce a simpler notation for this quantity. Let 

g(f) = b-‘ecVb. (1) 

Then 

g(t - u) = b-le-‘t-““b, 

so that 

y(t) = J' g(t - u) x(u) du. (2) 
-cc 

Equation (2) shows how the input, X, is transformed into an output, y. Note that 
the output at time t depends on all prior values of the input, not just on the input at 
time t. Most interesting physical, physiological, and psychological systems have this 
property. Thus (2) defines a mapping from functions (inputs) to functions (outputs), 
rather than from numbers to numbers. In other words, (2) defines a function, G, that 
maps functions (x) into functions (y). The calculus-style notation for this state of 
affairs would be something like y = G(x), where, when I write “y” instead of “y(t),” I 
refer to the entire voltage function, not just to its value at time t. (In common usage, 
the notation “y(t)” is ambiguous, sometimes standing for the function, y, and 
sometimes for its value at t.) 

Now the notion of “functions of functions” is potentially confusing, at least when 
considered in the abstract, so, instead of calling G a function, we call it a transfor- 
mation, or an operator, or a system. Moreover, it is customary to write “Gx” instead 
of “G(X).” y = Gx is a function of time, and we denote its value at time t in the usual 
way, y(t) = Gx(t). 

In summary, the transformation G is defined by Gx = y or 

' Gx(t) = 
I g(t - u> x(u) du, (3) 

-a3 

where 

g(t) = b-‘emub. (1) 

Our next order of business is to show that the transformation G has many nice 
properties. All of these properties could be described directly in terms of y’s and x’s, 
without mention of G. However, the G notation helps to focus attention on 
fundamental relationships, and permits us to state these relationships more 
compactly, which, in turn, makes them easier to learn and remember. 
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Linearity 

The first property of G is linearity. To understand what this is all about, we must 
understand how to add two functions, and how to multiply a function by a constant 
factor. This is very straightforward, but it is so basic that it is worth dignifying by a 
formal definition. 

DEFINITION. Let x and y be functions (of time) and let a be a constant. Then the 
sum, or superposition, of x1 and x2 is the function, xi + x2, given by 

(x1 + x*)(f) =x,(t) + -w (for all t). 

And the product, ax, of a and x is given by 

(ax)(t) = a X x(t). 

Functions are added “pointwise.” You can think of a in ax as an amplification 
factor. The graph of 2x looks like the graph of x, but all the vertical dimensions are 
doubled. 

I claimed above that G was a linear transformation or linear system. This means 
that it has the following properties. First, the output produced by a superposition of 
inputs is just the superposition of the corresponding outputs. Symbolically, 

G(x, + x2) = Gx, + Gx,. WI 

This is called the superposition property. The second property of linear systems is 
that amplification of the input produces the same amplification of the output, 

G(ax) = aGx. (L2) 

This is called homogeneity. 
The following proof may deepen your understanding of superposition. 

Proof of (Ll). The value of G(x, +x2) at time t is 

[G(x, +xz>l@> = j-’ cd- u>[(x, + xz)(u)I & -00 
by the definition, (3), of G; 

= 5 t s(t - u>lx,(u> + @>I & -cc 
by the definition of x, t x2; 

7 
I I,, I dt - u) xl(u) + dt - u) x&)1 du, 
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by the distributive law relating multiplication and addition of real numbers 
(a(b + c) = ab + ac); 

I 
= 

I 
g(t - u) XI(U) du + 

-cc I 

I 
g(t - u) x*(u) du, 

-cc 

by a property of integration (i(fi +fJ = (fi + jfi); 

= Gx,(t) + Gx,(r), 

by the definition of G; 

= (Gx, + Gx,)(t), 

by the definition of “+” for functions. Thus we have shown that 

G(x, + x2)(t) = (Gx, + Gx,)(t). 

In other words the functions (outputs) G(x, + x,) and Gx, + Gx, agree at every point 
in time. This, however, is what (Ll) means! 

The proof that G has property (L2) is similar, so I leave it to you as an exercise. 

Invariance 

The system G has another property that is every bit as important as linearity. This 
property is invariance or stationarity. To formulate this property economically, we 
must first discuss what it means to shift a function in time. For any function, x, and 
any number, r (tau), let T,x be the function whose value at t is the value of x at t - T, 

T,x(t) = x(t - z). (4) 

If r is positive, then T, introduces a delay of duration r in the evolution of x. The 
graph of T,x is just the graph of x, shifted to the right [sic] by time r, as in Fig. 4. 
Note that T,, like G, maps functions into functions. Thus it is referred to as the shift 
transformation or the shift operator. 

FIG. 4. Shift to the right. 
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To say that our system, G, is invariant means that the entire effect of shifting the 
input is to produce an equal shift in the output. Symbolically, 

G(T,x) = T,(Gx). (1) 

On the left, we shift the input. On the right, we shift the output. Property (I) says we 
get the same function either way. Invariance does not mean that the output is 
constant. It means that the mechanism for input-output conversion is constant. In the 
RC circuit, this reduces to’the stipulation that resistance, R, and capacitance, C, are 
constant over time. 

Proof of (I). At time I, the left side is 

by the definition, (3), of G; 

I 

t 
= g(r - u) x(u - 7) du. 

-m 

by the definition, (4), of T,. We now introduce a new variable of integration, 
w  = u - 7. Solving for u in terms of w, we get u = w  + 7. Substituting into the 
integral, we obtain 

I 
t 

I 
t--r 

g(t-U)X(U-7)du= 
-co -co 

g(t - (w + 7)) x(w) $ dw 

I 
t--r = g(t - 7 - w) x(w) dw 
-a2 

= Gx(t - 7) 

= [T,(Gx)lW. 

Thus 

[‘W’,x)lW = [T,(Gx)lW 
for all t, which is what property (I) means. 

Nonanticipation 

The system G has one additional property that is worth noting at this time. The 
output at time t, 

Gx(t)=f g(t-u)x(u)du, 
-cc 
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depends only on the input up to time t. Hence, if two inputs agree at least until time 
T, then their outputs also agree until time T. The system does not anticipate future 
inputs. It is said to be nonanticipating or causal, 

x(t) = y(t) for t < T implies Gx(t) = Gy(t) for t < T. WI 

This property is, of course, quite natural and intuitive. It turns out that it is a direct 
consequence of the initial condition that we imposed on the solution to our 
differential equation. Indeed, the property is actually equivalent to the initial 
condition, for linear systems. Recall that our initial condition was that there be no 
voltage across the capacitor before the input voltage onset time, t,. This can be stated 
as 

Gx(r) = 0 for t < t,, or, letting y = Gx, c, > t,. WI 

The similarity of (N) and (N’) is obvious, and, in fact, (N) and (IV’) are equivalent 
for any linear system G. I will give the simple proof in Lecture 6. 

Summary and Generalization 

This is a good place to take stock of what we have done. We have shown that the 
input-output transformation, G, for the RC circuit is linear, invariant, and nonan- 
ticipating. All of our arguments have proceeded from the equation 

Gx(t)=f g(t-u)x(u)du. (3) 
-cc 

For the RC circuit, g has the form 

g(f) = b-‘emub. (1) 

This may have slipped your mind, since we have not made any use of the equation 
for g in today’s lecture. Thus we have really proved the following theorem, which 
goes far beyond RC circuits. 

THEOREM. For any function g, the system G defined by (3) is linear, invariant, 
and nonanticipating. 

In fact, this result holds not only for bona tide functions, g, but for certain 
generalized functions, which we will introduce next time. We shall also prove the 
converse. Essentially any linear, invariant, nonanticipating system G can be 
represented in the form (3) for a suitable function or generalized function g. The 
universality of (3) is the fundamental theorem of time-domain analysis of linear 
systems. 
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Exercises 

1. Prove that the system defined by (3) satisfies (L2). 

2. Consider the systems, G, defined by the following equations. 
(a) Gx= 8x, 
(b) Gx(t) = tx(t), 
(c) Gx(t) = x(t) + 15, 
(4 Gx(t) = (x(t)>‘, 
(e) Gx = dx/dt, 
(f) Gx(t) = j-; x(u) du, 
(g) G = T, = shift by U, u > 0, 
(h) G=T,,u<O. 

For each system, and each of the properties (Ll), (L2), (I), and (N), prove that the 
system has the property or show by example that it does not. Here is one more, for 
good measure : 

(i) Gx(t) =x(21). 

Lecture 3. Impulse and Impulse Response 

Last time we showed that a system, G, given by an equation of the form 

Gx(t) = if g(t - u) x(u) du 
J-CO 

is linear, invariant, and nonanticipating. Our main objective today is to prove the 
converse: any linear, invariant, nonanticipating system G can be represented in the 
form (l), for a uniquely determined function g. 

The first step in this direction is to show how g can be recovered from G. Let me 
restate this problem in an amplified form: Suppose that G corresponds to a machine, 
hidden in one of the famous black boxes. We can perform a behavioral analysis of 
the machine. That is, we can stimulate it with any input and observe the resulting 
output, but we can’t open the box. Suppose that we hypothesize that there is a 
function g such that input and output are related by (1). How should we stimulate the 
machine in order to determine g? The answer may surprise you. If we kick box, the 
output will be g! 

Naturally, this statement requires interpretation. The “kick” I have in mind is a 
very short, very intense pulse, with 

strength x duration = 1. (2) 

The mathematical description of such a kick is rather amusing. We begin with an 
input pulse, x,, of duration E and strength I/E, so that (2) is satisfied, 

x,(t) = l/E, if 0 <t < E, 

= 0, otherwise. 
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This pulse is illustrated in Fig. 5. Here E is an arbitrary positive number, but you can 
think of it as small. As E + 0, x, approaches the “kick.” 

What is the response of G to the input x ~ ? To answer this, we begin by noting that, 
for any input x, Gx can be rewritten 

Gx(t) = lrn g(t - u) x(u) du, (1’) 
-02 

provided that g(r) is defined to be zero on the negative axis, 

g(r) = 0 for r < 0. (3) 

For if u > t in the integral, then g(t - u) = 0 and (1’) reduces to (1). Granting this, 

Gx,(t) = /= g(t - u) x,(u) du 
--co 

= 
1 

’ g(t - u) x,(u) du, 
0 

since x,(u) = 0 except for 0 ( u < E, hence 

Gx,(t) = E-’ 
I 

’ g,(t - u) du. (4) 
0 

So far we have assumed nothing about g (except (3)). Let us now assume that g is 
continuous at t. This means that g(r) --f g(t) as r --f t, or that the graph of g does not 
have a break at t. In Fig. 6, g is continuous at all points, t, except t = 0 and t = 13.3. 

Returning to (4), we see that, when E is small, t - u is close to t, so g(t - u) is 
close to g(t), by continuity. Thus, as E -+ 0, we can replace g(t - u) in (4) by g(t), 
which yields 

lim Gx,(t) = lj,” E-‘(’ 
r-0 0 

g(t) du = g(t) E- 1 I’ du = g(t). 
0 

l/r 

xc w 1 area under xc = 1 

I I et 
0 c 

FIG. 5. The input pulse x,. 

480/23/ 1~2 
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k=-- 13.3 

FIG. 6. A discontinuous function. 

Thus 

bz Gx,(t) = g(t), (5) 

provided only that g is continuous at t. 
Now I hope you will agree that this is straightforward and in no way mysterious. 

However, the same cannot be said for the notation we will now introduce, 

6 = unit impulse = delta function. 

This is just the “kick” that we have been discussing. It is supposed to be the limit of 
x, as E + 0, 

lim x, = 6. 
c-0 

The meaning of this limit is not too clear, but, interestingly enough, the limit in (5) is 
perfectly well defined for most interesting systems, and we can, in turn, use this limit 
to define G6, which we interpret as the response of the system to an instantaneous 
unit impulse. 

DEFINITION. G&t) = lim,,, Gx,(t). This quantity is called the impulse response of 
G. 

We can then interpret the argument leading up to (5) as a proof of the following 
theorem. 

THEOREM 1. If a linear system G is given by 

Gx(t) = Irn g(t - u) x(u) du, 
-CD 

then GS = g, i.e., g is the impulse response of G. 

(1’) 
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More about 6 

The argument that led to (5) shows that, if a function h is continuous at 0, then 

lim O” 
I ++o -m 

h(u) x,(u) du = h(0). (6) 

Just as above, we might consider the left hand side to be a definition of 
j-““, h(u) 6(u) d u. I n view of (6), this is equivalent to the following definition of this 
integral 

5 m h(u) S(u) du = h(O). (7) 
--a0 

The conventional viewpoint is that this equation is not a definition of the whole 
expression on the left, but is, instead, a definition of 6. The problem with this 
approach is that it is easy to show that there isn’t any bona fide function that satisfies 
(7)! Thus 6 is called a generalized function. It is something of a miracle that the 
theory of such generalized functions really works, and can, in fact, be put on a 
completely rigorous mathematical footing via high-powered methods. In particular, 
most of the standard recipes found in calculus books work just as well for generalized 
functions as for ordinary functions. We shall make use of this fact later. 

At any rate, once we are in possession of (7) we can obtain a marvelously direct 
proof of the last theorem. For if 

Gx(t) = I” g(t - u) x(u) du, 
-cc 

then, taking x = 6, we get 

G&t) = jrn g(t - u) 6(u) du 
-cc 

= g(t - 0) = g(t). 

So G6 = g, as claimed. 

Digression on Superposition 

Suppose that G is a system that has the superposition property, 

G(x, + x2) = Gx, + Gx,. 

Nothing else is assumed about G. It follows from (Ll) that 

G(x, + x2 + x3) = Gx, + Gx, + Gx,. 

(Ll) 
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G(x, + x2 + x3) = G((x, + x2) + x3) 

= G(x, + x2) + Gx,, 

by (Ll); 

= Gx, + Gx, + Gx,, 

by a second application of (Ll). 
Similarly, n - 1 applications of (Ll) yield 

(Ll) 

for any n > 1. We recover the original version of (Ll) by taking n = 2. It is but a 
short step from finite sums to infinite sums, and we will sometimes wish to assume 
that our system has the stronger superposition property 

W’) 

This arises, for example, when we attempt to apply G to an input, x, represented by a 
Fourier series 

x(t) = 2 (aj cosjt + bj sinjt). 
j=l 

Here 

s(t) = aj COSTS + bj sin.& 

We shall see that, if x is not periodic, we must superpose a continuum of exponentials 
to obtain a Fourier integral representation, 

x(t) = la (a(o) cos wt + b(o) sin ot) do 
-cc 

or 

where 

I 

cc 
x= x, dw 

-m 

x,(t) = a(w) cos wt + b(o) sin wt. 
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The superposition property for such “continuous sums” is 

(Ll”) 

When the need arises, we shall assume that our “linear systems” possess this 
extended superposition property. 

Main Theorem 

You will recall that our main objective was to obtain the following result. 

THEOREM 2. A linear, invariant, nonanticipating system G admits the represen- 
tation 

’ Gx(t) = 
I s(t - u) x(u) du, (1) 
-co 

where g = G6. 

ProoJ The unit impulse, 6, is a spike at time 0. It follows that d(t - u), regarded 
as a function of u with t fixed, is a spike at time t (t - u = 0 when u = t), Thus, by 
analogy with (7), 

I m x(u) 6(r - u) dp = x(t). 
--co 

But 6(t - u), regarded as a function of t with u fixed, is just the 6 function, shifted by 
u, 

d(t - u) = (T$)(t). 

Thus 

O” x(t) = 
I 

x(u)(T,, 4(t) du 
-co 

or 

x= 
I 

m x(u)( T, 6) du. 
-co 

For any fixed u, the function 

x, = x(u) T,,6 

(8) 

is an impulse of magnitude x(u) at time U. Thus we have represented an arbitrary 
input, x, as a superposition of impulses. 
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The rest is all downhill. Applying G to both sides of (8) and using the extended 
superposition property, (Ll”), we obtain 

Gx= O” 
I 

G[x(u) T,6] du 
-cc 

I 
co = x(u) G(T, 6) du, 
-cc 

by (L2), since, for fixed U, x(u) is just a constant; 

= I a x(u) T,(Gd) du, 
-co 

by invariance (property (I)); 

-O” = I x(u) T, g du, 
-cc 

by the definition of g. But 

Gx= co 
I x(u) Tu g du 
-m 

means that 

Gx(t) = Irn -4~) T, g(t) du 
-m 

for all t. or 

co Gx(t) = 
I 

g(t - u) 4~) du, (9) 
-cc 

by the definition of the shift transformation. 
Finally, since G is nonanticipating, and since s(t) = 0 for f < 0, it follows that 

g(t) = G6(t) = 0 for t < 0 (see property (N’) in the last lecture). Hence 

’ Gx(t) = 
I s(t - u) x(u) du, (1) 
-00 

as was to be shown. 

Spatial Patterns 

Suppose that we are interested in the appearance of a temporally constant pattern 
of vertical stripes. If x(t) is the luminance at horizontal position t, and y(f) = Gx(t) is 
the apparent brightness at t, we might be tempted to consider whether G is linear, 



LINEAR SYSTEMSTHEORY,LECTURE 3 21 

invariant, and/or nonanticipating. Linearity and invariance are interesting properties 
in this context. (Note that “invariance” is spatial invariance, as opposed to the 
temporal invariance considered above.) However, nonanticipation represents a gross 
left-right asymmetry that has no relation to visual perception. Hence it is of interest 
to know how our representation, (l), of the most general linear invariant nonan- 
ticipating system is affected if the nonanticipation condition is dropped. Our 
arguments show that the resulting more general representation is (9). 

THEOREM 3. Equation (9) represents the most generat invariant linear system. 
The system is nonanticipating if and only ifg(t) = G&t) = 0 for t < 0, in which case 
(9) reduces to (1). 

For full discussions of some linear systems approaches to the perception of spatial 
patterns, see Harris (1980) and Chap. XII of Cornsweet (1970). 

g May Be a Generalized Function 

The impulse response of the RC circuit is the bona fide function 

g(t) = b-‘emffb for t > 0, 

=o for t < 0, 

illustrated in Fig. 7. However, there are simple systems for which g is a close relative 
of 6. For example, if Gx = 5x, then g = G6 = 56. If G = T,, then g = T,S, a unit 
impulse at time r. And if Gx = dx/dt, then g = dS/dt, whatever that means! 

Exercise 

If x has finite onset time, let y = Gx satisfy the differential equation y’ = x and the 
initial condition t, > t,. Find the impulse response of G. (Hint: Integrate both sides 
of y’ = x from -co to t, then compare the resulting expression with (l).) G is called 
an integrator. 

g(t) 
I 

b-’ 

FIG. I. Impulse response of an RC circuit. 
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Lecture 4. Complex Numbers 

Our next main objective is to analyze an electrical circuit containing an induc- 
tance, as well as a resistance and a capacitance. Such a circuit can exhibit sinusoidal 
oscillation, and the study of such oscillation is enormously simplified by the 
introduction of complex numbers. Hence this is a good time to spend a lecture 
reviewing some of the elements of the theory of complex numbers. Chapter 22 of 
Feynman, Leighton, and Sands (1963) is required reading, and Chapter II of Knopp 
(1952) is also recommended. 

A complex number is an expression of the form z =x + iy, where x and y are real 
numbers (not input and output functions), and i = \T- Alternatively, we may think 
of z as a pair of real numbers, z = (x, y). This suggests the graphical representation in 
the Cartesian plane that is shown in Fig. 8. This representation is sometimes called 
an Argand diagram or a complex plane. x and y are termed the real and imaginary 
parts of z, and denoted 

x = re z, y=imz. 

z is real if and only if y = 0. 
The algebra of complex numbers involves two operations: 

(1) Addition. 

z + z’ = (x + iy) + (x’ + iy’) 

= (x + x’) t i(y + y’). 

This means that re(z + z’) = re z t re z’ and im(z t z’) = im z + im z’. 

(2) Multiplication. 

zz’ = xx’ t i’yy’ t ixy’ t iyx’ 

= (xx’ - yy’) t i(xy’ t yx’). 

If z =x is real, this reduces to 

xz' = xx' t lxy'. 

Geometrically, the sum, z t z’, is obtained by “completing the parallelogram,” as 

FIG. 8. The complex plane. 
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shown in Fig. 9. The geometric interpretation of complex multiplication will be given 
later. 

The basic algebraic properties of complex numbers are identical to the analogous 
properties of real numbers. Thus zz’ = z’z, z(w + w’) = zw + zw’, etc. 

If z = x + iy, its conjugate is 

Z=x-iy. 

Conjugates are illustrated in Fig. 10. Note that 

z5=x* +y* 

is real. The square root of this quantity is the distance, r, of z (or Y) from 0 in the 
complex plane. It is denoted 1 z 1 and called the modulus or absolute value of z, 

r=IzI=fi=pq. 

We can specify z completely by giving its modulus and also the angle, 0, between z 
and the positive real axis. See Fig. 11. The angle 13 is called the argument of z and 
denoted 

e = arg Z. 

FIG. 9. Addition of complex numbers. 

FIG. 10. Complex conjugates. 
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i 

FIG. 11. Modulus, r, and argument, 0. 

I and 0 are the polar coordinates of z. In theoretical work, angles are usually 
measured in radians, rather than degrees. 2x radians = 360 degrees. 

It is easy to express the “rectangular coordinates,” x and y, in terms of the polar 
coordinates. By definition 

Hence 

cos e = x/r, sin e = y/r. 

x=rcosO, y = r sin 8. (1) 

The Exponential Function 

You may have seen the representation of the real exponential function as an infinite 
(Taylor) series 

“, Xk 
ex= \ 

kco k?’ 

where O! = 1 and 

k!=kXk-lX*..X2Xl 

for k > 1. Since the only operations involved on the right are addition and 
multiplication, which make sense for complex numbers, it is feasible to use the series 
to define eL for z complex, 

“, Zk 
eL= T 

kza iz’ (2) 

Using this definition, it is not hard to show that 

e .z+ w = clew, (3) 

just as for the real exponential function. 
Now we come to an amazing fact, discovered by the great analyst L. Euler 

(1707-1783). If B is real, eie has modulus 1 and argument 8, 

Jeiel = 1, arg eie = 19. 
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FIG. 12. The complex number e”. 

This is illustrated in Fig. 12. By (l), the rectangular coordinates of eie are 

re eie = cos e . im eie = sin e. 

Thus 

e ie = cos e + i sin e (4) 

(“Euler’s formula”). It is well to ponder this state of affairs. As 8 increases, eie 
executes uniform counterclockwise motion around the unit circle (circle of radius 1) 
in the complex plane. This motion is conceptually simple. But the motion of the 
projections, cos 8 and sin 8, on the real and imaginary axes is much more 
complicated. Thus we shall often use eie instead of sin t9 and cos 0 to represent simple 
harmonic motion. 

We can now rewrite (1) in an interesting way. First 

z=x+iy 

= I cos 8 + ir sin e 
= r(cos e + i sin e). 

Hence, by Euler’s formula, 

z = reie (“polar form of z”), 

where 

(5) 

r=Izj and 8= argz. 

Polar representation is illustrated in Fig. 13. 
Now eie, like sin 8 and cos 0, repeats itself when 0 increases by 271. Hence we also 

have 

z = rei(0+2nn) 
3 n = 0, f 1, *2 ,... . 

In other words, the argument or angle of z is really determined only up to an additive 
integer multiple of 2n. The statements arg i = 7112 and arg i = 7r/2 + 272 = 5x12 are 
equivalent. 
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FIG. 13. The complex number t-e”. 

We can use (5) to give a geometric interpretation of complex multiplication. 
Suppose that 

z = reie and zr = rteie’a 

Then 

Thus 

(ZZ’I = rr’ = IZI IZ’I 

and 

arg(zz’) = f3 + 8’ = arg z + arg z’. 

Hence the modulus of a product is the product of the moduli and the angle of a 
product is the sum of the angles. For example, 1 iI = 1 and arg i = 742, so 

1 iz I = I z 1, arg(iz) = 42 + arg z. 

In other words, multiplication by i causes counterclockwise rotation by a right angle. 
The formula for arg(zz’) also implies that 

arg z” = n arg z 

for any positive integer n. 
In subsequent lectures, we are going to be much concerned with the complex 

sinusoid 

z(t) = P, 

with complex frequency s = u + iw. This is a complex-valued function of the real 
variable t, which, in these lectures, ususally represents time. (In the brightness 
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perception problem mentioned near the end of Lecture 3, t represents horizontal 
position.) Clearly 

z(t) = e’“t io)t 

= oltiwf e 

or 

z(t) = e”‘e’“‘. 

This is the polar from of z(t). The modulus and argument of z(t) are thus 

r(t) = 1 z(t)1 = e”’ 

and 

(6) 

O(t) = arg z(t) = ot. 

As t increases, z(t) rotates counterclockwise at a constant angular velocity, w, 

de/dt = o = angular velocity, 

while the modulus of z(t) increases or decreases exponentially, depending on whether 
c > 0 or o < 0. Hence z(t) spirals outward if u > 0 and z(t) spirals inward if B < 0. If 
CJ = 0 then z(t) = efWf, which runs around the unit circle at w  radians per unit time. 

The rectangular coordinates of z(t) are also interesting. Equation (6) implies that 

z(t) = cur cos cot + ie”’ sin wt, 

so 

re es’ = eUr 120s wt = X(f) 

yltl 

-t 

B 

FIG. 14. Exponentially modulated sinusoids, y(t) = 6” sin wt. In Panel A, u > 0. In Panel B, c~ < 0. 
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and 

im es* = eO* sin of = y(t). 

These are amplitude modulated sinusoids. Figure 14 illustrates y(t) for positive and 
negative cr. 

D@erentiation 

The standard methods of calculus extend easily to complex-valued functions of real 
variables. Let z(t) = x(t) + Q(t) be any such function. We define the derivative of z 
just as we would if z were real valued, 

z’(f) =$= l$J P[z(t + 6) -z(t)], 

and we note that it follows that 

z’(t) = fy 6-l [x(t + 6) + iy(t + 6) - x(f) - iy(t)] 
+ 

= Iii fF’[x(t + S) -x(t) + i(y(t + S) - y(t))] 

= lii[&‘(x(t + 6) -x(t)) + iS’(y(t t 6) -y(t))]. 

Thus 

z’(t) =x’(t) t iy’(t). (8) 

Therefore differentiation of a complex-valued function of a real variable is 
tantamount to differentiating its real and imaginary parts. (Note that z’ in this section 
is the derivative of the complex function z, whereas, in earlier sections, z’ was just a 
complex number that I wished to distinguish from another complex number, z.) 

For real s, we know that 

d 
dt est = se”. 

We shall now show that this important formula is also valid for complex s. In view of 
(7), 

$est =ty g-1[e”(t+6’ - es’] 

= l/n-j K1[ess - l] e”‘, 
+ 
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by (3); 

s2d2 s3d3 =l$-’ ss+- + [ 
- 2! + 3! + .‘. 1 St 

e ’ 

s3a2 
=~)TJ s+$-+~+-.. est 

+ [ I 

= se”, 

as was to be shown. 
In the special case s = i, (9) reduces to 

dit ze =ie”. 

Using (8) on the left, this becomes 

d d 
-cost+i-sint=i(cost+isint)=-sint+icost. 
dt dt 

But equality of two complex numbers is equivalent to equality of their real and 
imaginary parts, so we have obtained the famous formulas 

d . 
z Fan t = cos t 

and 

d 
z cos t = -sin t, 

which have mystified students in elementary calculus courses for decades. 

Exercises 

Study the lecture before beginning the exercises. Solutions to the exercises should 
be based on material presented in the lecture. 

1. Show that e” = 1. (Hint: Consider the definition of e’.) 
2. Prove that eKw = (e”‘)‘. (Hint: Consider e-“‘e”.) 

3. If z = reie, what are the polar coordinates of z-r? (Hint: (WV-’ = u-‘w-‘.) 

4. If z = x + iy, what are the rectangular coordinates of l/z? (Hint: Multiply 
numerator and denominator by T.) 
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5. If z = re”, show graphically that I= remie; in particular, 
7 
e re = e-itJ 

(10) 

6. Prove that cos(4) = cos B and sin(-8) = -sin 8. (Hint: Express both sides 
of (10) in rectangular coordinates.) 

7. 
- 

Prove that zw = Zw. (Hint: Use polar representations of z and w.) 

8. Prove that re z = (z + Y)/2 and im z = (z - 4/(2i). Use the latter result to 
prove the obvious fact that z is real if and only if z = Z: 

9. Prove that cos 8 = (e” + e-“)/2 and sin 0 = (eie - e-ie)/(2i). (Hint: 
Remember (lo).) 

10. Show graphically that e’“l* = i and ein = -1. Use the latter result and 
Exercise 9 to prove that cos(B + 7~) = -cos 0 and sin(8 + 7~) = -sin f?. 

11. Prove that 

c0s(e, + e,) = cos 8, cos 8, - sin 8, sin e,, 

sin(0, + e,) = sin 8, cos 8, + cos 8, sin 8,. 

(Hint: Express both sides of ei(e1+e2) = e’e1eie2 in rectangular coordinates.) 

12. Prove that Iz + WI < 1zI + 1 WI. (A graphical argument will suffice.) 

13. “Verify” ein = -1 by calculating Cit, (i;lr)k/k!. 

Lecture 5. RCL Circuits 

In Lecture 1 we analyzed an electrical circuit with a resistor and a capacitor in 
series. This led to a differential equation relating y(t), the voltage across the 
capacitor, and y’(t) to x(t), the impressed voltage. Since the equation involves only 
the first derivative, it is called a jIrst order equation. If we introduce an inductance 
into the circuit, the resulting differential equation involves y”, and is hence a second 
order equation. Figure 15 illustrates a circuit containing a resistor, a capacitor, and 
an inductance in series. 

Arguing just as we did in the first lecture, we obtain 

014 = Ul, + u23 + u34, (1) 
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where 
V 14 = xw, 

VIZ = Y(O. 

V *3 = i(t)R = y’(t) RC, 

vj4 = i’(t)L = y”(f) LC. 

Only the equation for the voltage, vj4, across the inductance is new. It expresses the 
fact that an inductance opposes a change in current, just as a mass opposes a change 
in its velocity. If current increases, a .voltage is created that opposes the flow of 
electrons. Substituting into (l), we find that 

uy” + by’ + y = x, (2) 

where 

a=LC and b=RC. 

Since y = C-‘q, where q is the charge on the capacitor, (2) can be expressed in terms 
of q as follows 

Lq” + Rq’ + C- ‘q = x. (31 

An analogous mechanical system is a mass suspended by a spring in a container of 
viscous fluid, as shown in Fig. 16. If y is the displacement of the mass from its resting 
position, and if x is an external force on the mass (over and above the gravitational 
force) then 

Fny” + cy’ + ky = x, (4) 

by elementary mechanics. The term cy’ represents the force on the mass due to its 
motion through the fluid. This force is proportional to its velocity, at least if velocity 

mass m 

drag c 

FIG. 16. A simple mechanical system. 

480/23/i-3 
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is not too large. The drag coefficient, c, depends on the viscosity of the fluid, among 
other things. Comparing (3) and (4), we obtain the dictionary 

electrical circuit charge, q inductance, L resistance, R c-’ 

mechanical rig displacement, y  mass, m drag, c stiffness. k 

Thus, in the process of studying the electrical circuit, we are also obtaining the 
behavior of the mechanical rig, and of a variety of other important systems that arise 
in electricity, mechanics, and other domains. 

We now return to the differential equation, (2), for the voltage, y, across the 
capacitor of the RCL circuit. For the time being, we shall restrict our attention to 
inputs, x, whose onset times satisfy t, > -co. Thus f, is finite, or x(f) = 0 for all t, in 
which case t, = + co. It can be shown that, ift, > -co, then (2) has one and only one 
solution, y, for which tY > ---co. In fact, as you would expect, t, > t,. We define a 
system, G, by letting Gx be this solution; thus Gx = y. 

THEOREM 1. G is linear, invariant, and nonanticipating. 

Proof: The condition t, > t, is called (N’) in Lecture 2, where it is noted that this 
condition is equivalent to nonanticipation for linear systems. Thus we need only 
prove linearity and invariance. 

Let x, and x2 be inputs with t,, > -co and txl > -co, and let y, = Gx, and 
y, = Gx, be the corresponding outputs. Then 

ay;+by;+y,=x, 

and 

ay;‘+by;+y,=x,. 

Adding these equations, we get 

a(~, + ~2)” + WY, + ~2)’ + (Y, + ~2) = xl + ~23 (5) 

since y; t y; = (y, t y2)’ and y’i’ t yy = (yl t y2)” (differentiation is linear!). 
According to (5), 

uy” + by’ t y = x, 

where 

Y = Yl + Y2 and x=x, +x2. 

Moreover, t, > --co, since t,, > -co and tY1 > --oo. Thus 

y=Gx 
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or 

or 

yl+ ~2 = % + ~219 

Gx, + Gx, = G(x, + x2). 

Hence G has the superposition property, (Ll). A similar argument verities (L2). 
To establish invariance, apply the shift operator, T,, to both sides of (2). This 

yields 

a(T, y)” + b(T, y)’ + T, y = Z-,x, 

since T,(y’) = (T, y)’ and T,(y”) = (T, y)” (differentiation is invariant). Thus 

aY” + bY’ + Y=X, 

where 

Y=T,y and X= T,x. 

Clearly t, > -00, so 

Y=GX 

or 

T, y = GT,x 

or 

T, Gx = GT,x. 

Thus G is invariant. 
This completes the proof of the theorem. Similar arguments apply to any system 

described by a differential equation with constant coefftcients. These arguments are 
based on the fact that the differential equation has one and only one solution 
satisfying the initial condition t, > -co. This is an “existence and uniqueness 
theorem” for the differential equation. Such theorems are readily available in 
mathematics books, but they require some work to prove. 

Impulse Response 

Now that we know that G is an invariant linear system, we may, in good 
conscience, proceed to determine its impulse response, g = G6. We expect this 
function to be the solution of 

ag”(t> + W(t) + g(t) = 6(f) (6) 
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with rg > I, = 0. The meaning of the differential equation is a bit murky because of 
the delta “function” on the right, but we shall be able to extract enough information 
from (6) to determine g. 

First, we note that J(t) = 0 for t > 0. Thus, for t > 0, (6) reduces to 

ug”(t) + bg’(t) + g(t) = 0. (7) 

As we shall see momentarily, this differential equation has an infinite number of 
solutions. To select the impulse response from among these solutions, we need 
additional information about the impulse response. The necessary information is 
contained in the two initial values 

and 

g’(O+) = ‘;B g’(Q 

which pertain to the behavior of the system immediately after an impulse input. 
How about g(O+)? If we “sock” the RCL circuit with an impulse at time 0, does 

voltage instantaneously appear across the capacitor? It does in the RC circuit (g(t) = 
b-‘eeub for t > 0, so g(O+) = b-i). However, it doesn’t here, since the inductance 
“fights” the surge of current and thus retards the charging of the capacitor. The 
situation is even clearer with the mechanical rig. If you kick the mass, it doesn’t 
“jump.” Instead, it “takes off.” Thus g(O+) = 0 but g’(O+) > 0. 

What, precisely, is the initial rate of change, g’(O+), of the output voltage, due to 
an impulsive input at time O? To determine this, we return to (6) and integrate from 
t = --E to t = E. This yields 

atg’(c) - g’t--E)) + WE) - d--E)) + j’ g(t) dt 
-c 

=(’ &t)dt= 1. 
--c 

Moreover, g(t) = 0 for all t < 0, so g(-e) = 0, g’(-e) = 0, and 

,f-’ 
--E 

g(t) dt = 1’ g(t) dt. 
0 

Thus 

u&(e) + bg(e) + ,f’ g(r) dt = 1. 
0 

(8) 
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Now let E 1 0. We know that g(s) --) g(O+) = 0, and, clearly, 

I’ g(t) dt -+ lo g(t) dt = 0. 
0 0 

Hence (8) yields, in the limit, g’(O+) = a-‘. 
In summary, we have found that g = G6 satisfies 

ag”(t) + bg’(t) + g(t) = 0 (7) 

for t > 0, together with the initial conditions 

g(O+) = 0 (9) 

and 

g’(O+) = a- ‘. (10) 

It remains only to show that this information suffices to determine g. 
Putting aside initial conditions for the moment, let us determine solutions of the 

differential equation, (7). Our complex sinusoid est comes in handy here. We know 
that 

hence 

de”/dt = sest, 

d2est/dt2 = s2eSt. 

Thus eSt is a solution of (7) if and only if 

asZest + bse” + eSt = 0 

or 

(as2+bs+ l)e”‘=O. (11) 

Now est # 0 (since e”‘e-“‘= ’ - e - l), so the product in (11) is zero if and only if the 
first factor is zero. Thus eSt is a solution of (7) if and only if s satisfies the charuc- 
teristic equation 

us2 + bs + 1 = 0. 

This equation has precisely two solutions, 

s+ = 
-b+\/;i 

2a 
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and 

s_= -b -G 

2a ’ 

where 

d=b’-4a. 

These expressions represent the famous “quadratic formula,” and d is called the 
discriminant. We conclude that es ’ + and es-’ are the only complex sinusoids that solve 
(7). 

These solutions can be combined to obtain additional solutions. Arguments 
presented earlier in this lecture show that, for any constants c, and c- , c, es+’ and 
c- eS-’ are solutions of (7), as is 

c, es+’ + c-es-‘. 

Moreover, it can be shown that this is the most general solution of (7), provided that 
s, # s- (or, equivalently, d # 0). In other words, if s, # s- and if g is any solution 
of (7), there are constants, c, and c-, such that 

g(f) = c, es+’ + c-es-‘. (12) 

In particular, the impulse response g = G6 has this form for t > 0. 
The constants c+ and c- are determined by the initial conditions (9) and (10). 

Letting t 10 in (12), we obtain 

g(Ot) = c, + c-. 

Thus (9) is equivalent to 

c, tc-=o. (9’) 

Differentiating (12) and then letting t 1 0, we get 

g’(Ot)=c+s+ +c-s-9 

so (10) is equivalent to 

c+s+ +c-s-=a-‘. (10’) 

It is easy to solve the simultaneous linear equations (9’) and (10’) for c, and c- . 
The first equation is equivalent to c- = -c+ . Replacing c- in (10’) by -c+, we 
obtain 

c+(s+ -s-)=a-’ 
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or 

1 1 
c+ = &+ - s-) = \/;i’ 

Thus 

c-=--c+=-- s;i* 
Combining these expressions with (12), we find that g = G6 is given by 

g(t) = J.- (es+’ - es-‘) 
fi 

(13) 

for t > 0, provided that d = b* - 4a # 0. There is no harm in also using (13) for 
t = 0. This yields g(0) = 0 = g(O+). S ince the RCL circuit is nonanticipating, g(t) = 0 
for t < 0. The following theorem summarizes these results. 

THEOREM 2. Let a = LC, b = RC, d = b* - 4a, and 

s+ = 
-bkfi 

2a ’ 

If d # 0, the impulse response of the RCL circuit is g(t) = 0 for t < 0 and 

for t > 0. 

g(t) = -!.- (es+’ - es-‘) 
fi 

(13) 

The comparable result for d = 0 is as follows. 

THEOREM 3. If d = 0, then 

g(t) = a-‘te-“’ (14) 

for t > 0, where o = b/(2a). 

A derivation of (14) can be given along the lines of our derivation of (13). We 
leave this as an exercise. 

Exercises 

Note that, if d = 0, then s+ = s- = -u, so e-“’ is the only complex exponential 
solution of (7). However, tewot is also a solution in this case. 

1. Verify that te-O’ satisfies (7) if d = 0. 
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It can ,be shown that the most general solution of (7) is 

g(t) = k, e-“’ + k, terna’. 

2. Show that this function satisfies the initial conditions (9) and (10) if and 
only if k, = 0 and k, = a-‘. 

Lecture 6. RCL Circuits, Convolution, 
Simple Composite Systems, Odds and Ends 

Our next project is to take a closer look at the impulse response of the RCL 
circuit. Recall that, if d = 0, then 

g(t) = a-‘te-“’ (1) 

for t > 0, whereas if d # 0, then 

g(t) = 1 (es+’ - es-‘) 
fi 

for t > 0, where 

0 = b/(2a), 

s, = 
-bf fl 

2a ’ 

and 
d = b2 - 4a. 

(2) 

(3) 

If d # 0, it may be positive or negative. Let us consider each of these possibilities. 
Suppose first that d > 0. Then s, and s- are both real, and s, > s_ . Moreover 

a=LC>O. so 

d=b’-4a < b2. 

Hence 

so that 

s, = 
-b+@ 

2a 

-b+b 
< 

2a 

= 0. 
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Therefore, if d > 0, 

s- <s, < 0. 

It follows that s- t < s+ t and esmr < e ‘+’ if t > 0. Therefore g(f) > 0 for ail t > 0. Also 
s*t-+-coast-+co,soe S*‘+Oast+co.Consequentlyg(t)-+Oast-+03. 

The simplest picture consistent with these observations and with g(0) = 0 is shown 
in Fig. 17. The distinguishing feature of this graph is the single peak. It is not difficult 
to show that the graph of g does indeed have this shape, and that the peak occurs at 

t=(s+ -s-)-l ln(sx/s+>, 

where In is the natural logarithm. (This expression for t was obtained by differen- 
tiating (2), setting the derivative equal to zero, and solving the resulting equation.) 

The shape of the impulse response for d = 0 is similar to that shown in Fig. 17. 
However the graph is rather different when d < 0, as we shall now show. 

If d < 0, then d = -( d 1, so 

fi=m 

=\/-1m 

=iv/idi. 

Thus s, and s- are complex conjugates, 

s* = 
-b+i\/i;ii 

2a 

or 

where 

s* =-u f io, 

a = b/2a 

FIG. 17. Impulse response of an RCL circuit with d > 0. 
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w = m/2a. 

Substituting -u f io for s+ in (2), factoring out e-“‘, and recalling that 

fi= im= 2iaw, 

we obtain 

g(t) = $ e-“‘+ (eimf _ emiur). 

But 

$ (e’“’ - epiof) = sin wt 

(see Exercise 9 of Lecture 4). Hence, if d < 0, 

g(f) = (am)-’ e-“’ sin wt (4) 

for t > 0, where u = b/(2a) and o = \/T;Ti/(2a). This function is illustrated in Panel B 
of Fig. 14. 

Unlike the impulse response function for d > 0 (or for the RC circuit), this one 
oscillates, crossing the t axis at points where ot = nn, n = 0, 1, 2,...; that is, t = nn/w. 
The parameter w  is the frequency of free oscillation of the system. It is called the 
natural frequency. 

Convolution 

We showed in Lecture 3 that every invariant linear system is related to its impulse 
response via the equation 

Gx(t) = lm g(t - u) x(u) du. (5) 
-cc 

If G is nonanticipating, then g(t - u) = 0 for u > t, so (5) reduces to 

Gx(t)=(’ g(t-u)x(u)du. 
-m 

However, the more general expression, (5), is more convenient for our present 
purposes. 

Introducing the change of variables r = I - u into (5), and noting that u = t - T, we 
obtain 

Gx(t) = Irn g(s) x(t - 7) ds. 
-m 
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Reversing the order of g(r) and x(t - 7) and changing the name of the variable of 
integration from 7 to u, we find that 

Gx(t) = jm x(t - u) g(u) du. (6) 
-m 

Notice that the roles of g and x are precisely reversed in the integrals (5) and (6). 
We shall now introduce a useful notation. The integral on the right in (5) is 

denoted g * x(r), 

g * x(t) = Irn g(t - u) x(u) du. (7) 
-cc 

For any two functions g and x, g * x is a function, called the convolution of g and x. 
The value of this function at time t, g * x(t), is given by (7). 

In this notation, the integral on the right in (6) is x * g(t), and the fact that the 
integrals in (5) and (6) are equal means that g * x(t) =x * g(t) for all t, or 

g*x=x*g. (8) 

Convolution of functions is analogous to multiplication of numbers, and (8) says that 
convolution, like multiplication, is commutative. 

Using this new notation we can write (5) and (6) in the abbreviated forms 

and 

Gx=g*x (5) 

Gx=x*g. (6) 

As a simple application of (6), let us consider the case where x is the unit step 
function, 

40 = 1 if t > 0, 

=o if t < 0. 

Then Gx = G,u is called the step response. According to (6), 

G,u(t) = (” p(t - u) g(u) du. 
-a, 

But ,u(t - u) = 0 if u > t and ~(t - u) = 1 if u < t, so 

Gp(t) = 1’ g(u) du. 
-m 
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(If G is nonanticipating, this reduces to 

G/(t) = f g(u) du.) 
0 

Thus the step response is the integral of the impulse response. This implies that 

The impulse response is the derivative of the step response. 

(9) 

Simple Composite Systems 

A popular type of model in psychology and many other sciences is a network of 
interconnected simple components (delays, integrators, differentiators, RC circuits, 
etc.). The analysis of networks is greatly facilitated by frequency domain techniques 
treated in subsequent lectures. All I will do today is consider two simple composite 
systems that can be obtained by interconnecting invariant linear components, G, and 

G,. 
The composite systems I have in mind are denoted G, + G, and G, G,, and defined 

as follows : 

(G, + G,)x = G,x + G,x (11) 

and 

(G, G,)x = G,(G,x). (12) 

In the first case, we add the outputs of G, and G, for the same input, x. In the second 
case, the output of G, is taken as the input of G,. In G, + G, the components operate 
in parallel; in G, G, they are in series or cascade. A trivial special case of (12) is 
aG,, where a is a constant amplification factor, 

(aG,)x = a(G,x). (13) 

The bZock diagrams for (1 1 ), (12), and (13) are shown in Fig. 18. 
It is easy to express the impulse responses of these systems in terms of the impulse 

responses, g, and g,, of the components. Clearly 

(G, + G,)6 = G, 6 + G,6 (14) 

=i?, +g2, 

(aG,)d = a(G, S) (15) 

= ag,, 
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FIG. 18. Three simple composite systems. 

and 

(G, GJ8 = G,(G,4 

=G,g, 

or 

(G,G,P = g, * is,. (16) 

Thus the impulse response of a cascade is the corresponding convolution of impulse 
responses. Since g, * g, = g, * g, (take g = g, and x = g, in (8)), G, G, and G,G, 
have the same impulse response and are therefore functionally identical. The order of 
components in a cascade of invariant linear systems is immaterial. In particular, if a 
psychological system is a cascade of invariant linear subsystems, the order of the 
pieces can’t be discovered by pure stimulus-response analysis. Behaviorists, take 
note! 

Odds and Ends 

Before pushing on to frequency domain analysis, let me deal with three 
technicalities concerning the general theory of linear systems. 

1. On linearity. We say that G is linear if it has properties (Ll), G(x, + x2) = 
Gx, + Gx,, and (L2), G(ax) = aGx. These two equations can be combined into a 
single equivalent equation, 

G(a,x, +a,x,)=a,Gx, + a,Gx,. CL) 
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Proof of equivalence. Suppose G satisfies (Ll) and (L2). Then 

by PI); 

G(a,x, + a& = G(a,x,) + G(a,x,), 

= a, Gx, + a,Gx,, 

by (L2). Conversely, if G satisfies (L), then, taking a, = a, = 1, we see that it 
satisfies (Ll), and, taking a2 = 0, we see that it satisfies (L2). 

2. The superposition property (Ll ) almost implies homogeneity (L2). More 
precisely, (Ll) implies G(ax) = aGx for all rational numbers a. Thus superposition is 
almost synonymous with linearity. 

Proof: This proof is lots of fun. First, we saw in Lecture 3 that the superposition 
property for sums of two inputs implies an analogous property for sums of n inputs. 
Thus 

G(nx)=G(x+x+ . . . +x) 

n times 
w- 

= Gx+Gx+...+Gx 

= nGx, 

for any positive integer, n. 
For any positive rational number, a = m/n, it follows that 

nG (tx)=G (n (tx)) 

= G(mx) 

= mGx. 

Hence 

G(ax) = aGx 

for any positive rational number a. 
Let 0 be the null input, O(t) = 0 for all t. Clearly 0 + 0 = 0, so 

GO=G(O+O)=GO+GO. 

Subtracting GO from both sides, we see that 

GO=O. (181 

(17) 
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This conclusion is of some interest in its own right. It says that any system satisfying 
(Ll) gives no output if you provide no input. This means, in practice, that, if you 
wish to apply linear systems theory to a real-world system, you must let the “output,” 
y(t), be the departure from the “resting state” of the system. 

Returning to our proof, (18) implies (17) for a = 0. It also implies 

hence 

O=GO=G(-x+x) 

= G(-x) + Gx, 

G(-x) = -Gx. 

In particular, if a is a negative rational number, then a = --[a (, so 

G(ax) = G(-1 a Ix) 

= -G(Ial xl, 
by (19); 

= -Ial Gx, 

(19) 

since la I is a positive rational number; 

= aGx. 

Thus G(ax) = aGx for all rational numbers-positive, negative, and zero-as was to 
be shown. 

3. If G has the superposition property, then the nonanticipation condition, 

x,(t) = x2(t) for t < T implies yl(t) = y2(t) for t < T, P) 

is equivalent to 
t,>t,. P’) 

Here yi = Gxi, y = Gx, and t, is the onset time of x. 

ProoJ: Suppose G is nonanticipating. For t < t,, x(t) = O(t), where 0 is the null 
input. Hence (N) implies Gx(t) = GO(t) for t < t,. But Gx = y and GO = 0, so 
y(t) = 0 for t ( t,. Therefore t, > t, and (N’) is satisfied. 

Suppose, conversely, that (N’) holds, and that x,(t) =x?(t) for t < T. Then t, > T, 
where x=x, -x2, so, by (N’), t, > T, where 

y=Gx 

= Gx, - Gx, 

=YI -Yz* 

Hence y,(t) -y*(t) = 0 for t ( T, and G is nonanticipating. 
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Exercises 

Use (16) to find the impulse response of a cascade of two RC circuits, G, and G,. 
Let bi be the time constant of Gi. You will have to treat the cases b, = b, and b, # b, 
separately. Compare your results with Eqs. (1) and (2) and discuss the implications 
of this comparison for “gross behaviorism.” 

PART B. ANALYSIS IN THE FREQUENCY DOMAIN 

For additional information on this topic, see Bracewell (1978) or Chapters 5 and 6 
of Schwarz and Friedland (1965). 

Lecture 7. Transfer Functions and Laplace Transforms 

Much of linear systems theory revolves around the fact that linear systems map 
sinusoidal inputs into sinusoidal outputs. We will prove this today. The part of the 
theory that deals with these matters is called “analysis in the frequency domain.” 
Now it is possible to develop this material in terms of sines and cosines, but, as you 
might guess, it is much easier to use complex sinusoids, and we will follow the latter 
route. Thus we will consider the output, Gz, when z is the complex sinusoid z(t) = es’. 
First, however, we must ask what it means to put a complex input into a real system! 
It means just this: A complex input, 

z(t) =x(t) + iy(t), 

may be thought of as a pair of real inputs, We apply G separately to each of these to 
obtain two outputs, Gx and Gy, which are taken to be the two components of the 
complex output, Gz. Definition 1 expresses this in other words. 

DEFINITION 1. If z = x + iy, then Gz is defined by 

Gz(t) = Gx(t) + iGy(t) 

or 

Gz = Gx + icy. 

Think of running the “signals” x and y through separate channels. G operates 
independently in both channels to produce a two-channel output. 

It is easy to show that, if we begin with a system that is linear, or invariant, or 
nonanticipating for real inputs, then the extended system ‘defined above has the same 
properties for complex inputs. In the case of property (L2), if G(ax) k aGx for a and 
x real, then the extended system satisfies G(cz) = cGz for c and z complex. 

We shall also need to know how to integrate complex-valued functions of a real 
variable. 
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DEFINITION 2. If z(t) = x(t) + iy(t), then Ii z(t) dr is defined by 

z(t) dt = x(t) dt + i jb y(t) df. 
a 

Suppose now that G is the invariant linear system given by 

Gx(t) = g * x(t) = jrn g(t - u) x(u) du, 
-cc 

47 

(1) 

for x real, and let z(t) =x(t) t Q(t) be a complex input. Then 

Gz(t) = Gx(t) + iGy(t), 

by Definition 1; 

co 00 
= 

I 
g(t - u) x(u) du t i 

I 
g(t - u> Y(U) du, 

-cc -cc 

by Eq. (1); 

=I 

cc 
[ g(t - u> x(u) + k(t - u> Y(u)I du, --c4 

by Definition 2; 

= I m g(t - u) z(u) du. 
-cc 

In other words, if G is invariant and linear, it satisties (1) for complex inputs as well 
as real ones. Similarly, 

Gz(t) = z * g(r) = Irn z(t - u) g(u) du (2) 
-ccl 

is valid for complex inputs, z(t). 
We may summarize this tedious discussion by saying that the theory of linear 

systems “looks the same” and “works the same” for real and complex inputs, so we 
need not, in theoretical work, pay much attention to the distinction. 

Transfer Functions and Laplace Transforms 

We are finally ready to calculate the response of an invariant linear system, G, to a 
complex sinusoidal input, z(t) = es’. By (2), 

480/23/l-4 
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Gz(t) = 
I 

O” z(t - u) g(u) du 
-m 

I 

cc 
= e s(t-u)g(u) du 

-m 

I 

co 
= eS’eCSUg(u) du 

-cc 

Hence 

= emS”g(u) du e”‘. 1 
O” Gz(t) = 

[I 
eeS”g(u) du z(t). 1 (3) 

-02 

The integral on the right defines the (bilateral) Laplace transform of g. It is a 
function of the complex variable s. We denote it G(s) (or, in other contexts, 
y’( gKs))* Thus 

G(s) = 4p{ g}(s) = I_“, e-““g(u) du 

= Laplace transform of g. 

(4) 

(If g(u) = 0 for u < 0, then 

G(s) = jm e-““g(u) du.) 
0 

In terms of this notation, (3) simplifies to 

Gz(t) = G(s) z(t) 

or 

GeS’ = G(s) es’. 

Thus we have proved the following fundamental theorem. 

(4’) 

(5) 

THEOREM. If G is an invariant linear system, then complex sinusoidal inputs 
produce complex sinusoidal outputs of the same complex frequency, s. The entire 
eflect of the system is to multiply the sinusoid by a frequency dependent factor, G(s). 
This factor is the Laplace transform of the impulse respqnse, g. 

The factor G(s) is also called the transfer function of the system G. This 
terminology emphasizes the relation, (5), of G(s) to the system, whereas the Laplace 
transform terminology stresses the relation of G(s) to the impulse response. Our 
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interest in G(s) arises from its role in (5), and this equation provides a powerful 
method of determining G(s). A typical system is defined by an equation relating 
y = Gx to x. We simply take x = es’ and y = G(s) es’ in this equation and perform a 
bit of algebra to isolate G(s). 

Examples 

Consider first the RCL circuit, which, for mathematical purposes, is defined by 

ay” + by’ + y = x. 

Plugging in x = esr and y = G(s) e”‘, and noting that y’ = sy and y” = s2y, we obtain 

(as’ + bs + 1) G(s) es’ = es’ 

or 

G(s)=(as2+bs+ l)-’ (RCL circuit, a = LC, b = RC). (6) 

The RC circuit (or “RC filter” as it is commonly called) is the special case in which 
L = 0, hence a = 0 and 

G(s) = (bs + I)-’ (RC circuit, b = RC). (7) 

Next we consider the following systems: 

amplifier, y = ax; 

shift, y(t) = x(t - 7); 

dlflerentiator, y=x’; 

integrator, y’ = x. 

Taking x = es’ and y = G(s) es* in these equations, and isolating G(s) on the left, we 
obtain 

amplifier, G(s) = a; (8) 

shift, G(s) = ecrs; (9) 

dlrerentiator, G(s) = s; (10) 

integrator, G(s) = s-‘. (11) 

All of the examples considered so far, except for the shift, are special cases of the 
general integro-dlrerential system 

+ qk dky/dtk = 
k=O 

f’ p,&/dri, 
,TO 
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where doy/dt’ = y and pj and qk are real constants. The technique used above easily 
yields the following expression for the transfer function: 

G(s) = P(s)lQ(s), (12) 

where 

P(s) = c pjs’ 
j=O 

and 

Q(s) = CT qksk 
k:O 

are polynomials. A ratio of polynomials is called a rational function, so G(s) is called 
a rational transfer function. 

Straightforward calculations yield the transfer functions of the simple composite 
systems G + H and GH. Clearly 

(G + H) est = GeS’ + He” 

= G(s) es’ + H(s) est 

= (G(s) + H(s)) es’, 

and 

(GH) esr = G(HeSf) 

= G(H(s) es’) 

= H(s) GeS’ 

= Z-Z(s) G(s) es* 

= G(s) H(s) es’. 

Thus 

and 

(G + H)(s) = G(s) + H(s) (13) 

(GH)(s) = G(s) H(s). (14) 

The transfer function of a sum is the sum of the component transfer functions, and the 
transfer function of a cascade is the product of the component transfer functions. 
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Laplace Transforms of Convolutions 

Equation (14) has some interesting corollaries. We saw in the last lecture that the 
impulse response of GH is g * h, where g = G6 and h = H6. The transfer function 
(GH)(s) is the Laplace transform of this impulse response, 

(GW(s) = pi g * h l(s), 

just as G(s) = .P{ g}(s) and H(s) = P(h)(s). Hence (14) is equivalent to 

pig* h}(s)=~{gj(s)~P(hj(s). (15) 

The Laplace transform of a convolution is the product of the Laplace transforms. 
This is valid for arbitrary functions g and h, since any function is the impulse 

response of an invariant linear system. Replacing h by x and g * x = Gx by y, we see 
that 

~;u1Yl(S> = 91 gl(s) ~{xl(s) 

or 

Y(s) = G(s) X(s). (16) 

The Laplace transform of the output is the Laplace transform of the input times the 
transfer function of the system. 

The Laplace Transform is Invertible 

The transfer function G(s) determines the response of G to complex sinusoids. If G 
and H are two invariant linear systems with G(s) = H(s) for all s, then Gx = Hx for 
complex sinusoids x = e”‘. Must Gx = Hx for all inputs x, so that G = H? In other 
words, 

Does G(s) = H(s) imply G = H? 

Now G(s) = g{ g}(s), H(s) = p{h}(s), and G = H if and only if g = h. Thus our 
question is equivalent to 

Does P{ g} = M{h} imply g = h? 

or 

Is the correspondence between g and .Y{ g} “invertible” or “one-to-one”? 

In the next lecture, we shall see that the answer to this question is “yes.” Hence 
systems are completely characterized by their transfer functions, and functions are 
completely characterized by their Laplace transforms. The latter statement applies to 
input and output functions, as well as impulse responses. 

Equation (16) shows that the action of G is very simple at the “level” of Laplace 
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transforms. It now emerges that no information is lost by operating at this level, since 
Y(s) = Y{ VH s completely determines y. Thus the description (16) of G is both 1 
simple and complete. 

Exercise 

Rederive the transfer function, (6), of the RCL circuit by integration. That is, use 
(4’) in conjunction with Eq. (13) of Lecture 5. Assume d # 0 and re s > re s, . 

Lecture 8. Inversion and Interpretation of Laplace Transforms 

This lecture has two main objectives: (1) to show how a function, x(t), can be 
recovered from its Laplace transform, X(s), and (2) to provide a “concrete inter- 
pretation” of X(s). We shall obtain a single formula [Eq. (7) below] that accom- 
plishes both objectives. 

Our starting point is the following, seemingly unrelated problem: Given a function, 
x(t), how can we represent this function as a superposition of complex sinusoids? I 
have in mind a “continuous superposition,” 

I 

cc 
x(t) = c e”‘F(s) do, (1) 

--cc 

where s = u + iw, and c is some constant, to be chosen later. All of the complex 
frequencies, s = u + iw, that appear in this formula have the same real part, (I, but a 
continuum of imaginary parts occur, corresponding to a continuum of different 
frequencies of circular motion. The factor cF(s) dw is the weight given to the complex 
sinusoid est in the superposition. The constant real part, u, plays a rather peripheral 
role in (1). We will have more to say about it later. 

It is an amazing fact that most functions can be decomposed into complex 
sinusoids in this way. We shall not prove this. Instead we shall assume that it is 
correct, and then we shall determine what the appropriate weight function must be. 
You will see shortly that the result of this exercise will be quite illuminating. 

Assume, then, that (1) is given, and let us try to determine a formula that expresses 
F(s) in terms of x(t). (This amounts to “inverting” (l).) Let s’= u + i6 be a complex 
number with the same real part as s, and multiply (1) by e-r’: 

e-“x(t) = c 
I 

m 
efS-“” F(s) dw 

-* 

cc 
=c 

I 
eico-‘“‘F(s) do,’ 

--(I) 

since the real parts of s ans s’cancel. Now integrate both sides from t = -T to t = T: 
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eC”‘x(t) dt = c 

e”“-i”F(s) dt da, 
I 

where we have interchanged the orders of o and t integration; 

e i(w- ‘)I dt 1 F(s) do, 

since F(s) = F(a + io) doesn’t depend on t; 

m e i(w-O)l T  

= c 
I --oo i(u-(3) (=-T 

F(s) du 

m  ei(o-&i)T _ ,-itw-Gi)T 

=c 
I 

F(s) do 
--co i(0 - 6) 

03 =c 
--co 

= 2c 
1 

m sinI@ - +I F(o + iu)rdu 
-m (w--p- 

Now make the change of variables u = T(w - (3), and note that du = Tdw and 
CO=&+ T-h, so that 

T  
e-“‘x(t) dt = 2c 

I 
O” !!!-ff F(f + iT- ‘u) du. 

-T -co u 

If we now let T--P a~, we obtain 

I 
00 

e-“x(t) dt = 2c 
--co I 

m yF(C)du, 
-al 

since T-b -+ 0, or 

Cc 
e-“x(t) dt = 2c 

-02 

Reference to a table of definite integrals shows that 

(2) 
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Substituting this into (2), we see that 

F(f) = +--J e-“‘x(t) dt, 
00 

or 

F(s) = $1: Px(t) dt, 
m 

or 

F(s) = & ~{xl(s). 

We have not yet decided how to choose the constant factor c. We are at liberty to 
choose it in any way we please. The choice suggested by (3) is 

c = l/271, 

in which case (1) reduces to 

x(t) = -L cm 2n (_ eSfW du co 
and (3) becomes 

F(s) = ip{x}(s). (4b) 

To recapitulate this lengthy development: If a function x(t) can be decomposed, as 
in (4a), into a superposition of complex sinusoids, then the contribution of the 
complex frequency s = o + io to the superposition is proportional to Y{x}(s). This is 
the promised concrete interpretation of the Laplace transform. 

There remains the awkward “if” in the previous statement but one. It remains to 
state a condition under which this qualification can be removed, so that we can 
assert, unconditionally, that (4a) and (4b) are valid. The need for some sort of 
condition is clear if we consider the formula for the Laplace transform: 

Y{x}(s) = 1” e-“x(t) dt. 
-02 

(5) 

Nothing said so far guarantees that this integral is well defined! We shall certainly 
have to make an assumption that will ensure that the Laplace transform makes sense. 
In addition, we shall have to assume that the function x is fairly smooth near the 
points, t, to which (4a) applies. 
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THEOREM. Suppose that, for some constants T, K, and uO, we have x(t) = 0 for 
t < Tand 

Ix(t)\ < Keuo’ for t>T. (6) 

(We say that x is “of exponential order.“) Then X(s) = Y{x}(s) is well defined g 
cr = re s > uo. Moreover 

x(t) = (2~)-‘/~ es’X(s) do, 
-cc 

s = cr + io, (7) 

provided that the derivative, x’(u), exists and is continuous in some small interval, 
t - E < u < t + E, around t. 

Of course, (7) is just a combination of (4a) and (4b). I will skip the proof of (7), 
since it has much in common with the argument that led to (4a) and (4b). Thus it 
remains only to show that 9(x}(s) is well defined. 

Proof that 9(x}(s) is well defined. It suffices to show that the integral in (5) is 
finite when the integrand is replaced by its absolute value, lees’1 Ix(t)l. But 

e --Sf _ --of -iwt -e e , 
so 

F’l = eeufa 
Since x is of exponential order, 

lees’1 lx(t)1 < Ke-‘“-““” for t >, T, 

and lePs’( Ix(t)1 is zero for t < T. Thus 

I 
00 
--oo le-“‘l Ix(t)ldtgKjme-‘“-“o”dt 

r 

= K(u _ go)-I e-(“-oolT, 

provided that u > u,,. Thus the integral is finite, as was to be shown. 

Inverse Laplace Transform 

Not only does (7) tell us what the Laplace transform “means,” but it also shows 
that a function, x, can be reconstructed from its Laplace transform, X. In other 
words, (7) shows that the Laplace transform is invertible-that there is a one-to-one 
correspondence between functions and their Laplace transforms. To make this 
clearer, let me define a new transformation, P-i, by 

Y-‘(X)(t) = (2a)-’ lrn e’%(s) dw, 
-00 

s = u + io. (8) 
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Then (7) says that 

x(r) = 9+‘(~{x)}(t) 

x = iP(~{x)}. (9) 

The transformation 9-l “undoes” or “inverts” 9. We will refer to Y- r(X) as the 
inverse Laplace transform of X. 

It follows immediately from the definitions of Y and 9-l that both are linear 
transformations, 

and 

4p-’ 1 I 2 ajXj = qT ajY-‘{Xi}. 
j=l ,F, 

(10) 

(11) 

These equations will be used frequently in subsequent lectures. 

Inversion without Integration 

The integral definition, (S), of ip-’ is somewhat forbidding, and we shall, in fact, 
have little use for it in the future. Laplace transforms are more easily inverted by 
“reading the Laplace transform table backward.” 

EXAMPLE 1: THE INTEGRATOR. Let G be the integrator, defined by y’ =x. In the 
exercise for Lecture 3, you showed that g is the unit step function 

g(4 = P(t) = 1 for t > 0, 

=o for t < 0. 

Moreover, we saw in the last lecture that 

9{ g}(s) = G(s) = s-‘. 

Therefore, 

P{p)(s) = s-l. 

Applying 4p-’ to both sides and using (9), we find that p = 90-l {SC’ } or 

Y-‘{s-l) =p. 

Note that our derivation of this formula circumvents the integration in (8). 

(12) 

(13) 
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EXAMPLE 2: RC FILTER. If G is an RC filter, then 

g(t) = b-‘ewub, for t > 0, 

= 0, for t < 0, 

or, more compactly, 

g(t) = b-kub,u(t). 

Also, we saw in the last lecture that 

9{ g}(s) = G(s) = (bs + 1)-i, 

so 

9{b-1e-u*p(t)}(s) = (bs + 1)-l. 

Just as in Example 1, we conclude that 

PP-‘((bs + l)-‘}(t) = b-‘e-““p(t). 

(14) 

(15) 

EXAMPLE 3: CASCADE OF RC FILTERS. Let G be a cascade of n RC filters with 
the same time constant, b, and let g, be its impulse response. Then 

if{ g,}(s) = G(s) = (bs + l)-“, (16) 

since cascading systems corresponds to multiplying transfer functions. Hence 

P’{(bs + I)-“}(t) = g,,(t). (17) 

We shall show next time that 

” I 
s,(t) = b-” (ntI 1)! e - ‘lbCl(t), (18) 

where (n - l)! is the product of the first n - 1 positive integers. 
These examples illustrate how formulas for Laplace transforms yield equivalent 

formulas for inverse Laplace transforms. 

Interpretation of Y(s) = G(s) X(s) 

Suppose now that G is an invariant linear system, and let y = Gx. Last time we 
derived the rather mysterious formula 

Y(s) = G(s) X(s). (19) 

What does this formula mean, and where does it come from? It says that the amount 
of est in y is G(s) times the amount of esf in x. Why is this? According to (7), x is a 
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superposition of complex sinusoids with weighting factors X(s). If we apply G to both 
sides of (7) and use the linearity of G, we see that 

y(t) = (2,,-‘lm [Ge”‘] X(s) dw 
-co 

(X(s) doesn’t depend on t, so it is just a constant as far as G is concerned). But 

GeSf = eSfG(s), 

so 

y(t) = (27~)~’ la esf[ G(s) X(s)] dw. 
--co 

Equation (19) is obtained by comparing this with 

y(t) = (2x)-,’ lTrn es’Y(s) do. 

This derivation shows very concretely that, if we know how an invariant linear 
system transforms complex sinusoids, then we know how it transforms anything else. 
This is a most endearing property of invariant linear systems. 

Lecture 9. Rational Transfer Functions, Feedback 

Almost all of the systems considered so far have rational transfer functions, 

G(s) = W)lQ(sh (1) 

where P(s) and Q(s) are polynomials. The importance of such transfer functions is 
greatly enhanced by the principle that interconnection of components with rational 
transfer functions will produce a network whose overall transfer function is rational. 

EXAMPLE: MANUAL TRACKING WITH FEEDBACK. One of the great strengths of 
linear systems theory is the ease with which it handles systems involving feedback. 
Consider, for example, the situation depicted in Fig. 19. As in Fig. 16, y is the 
displacement of the mass from its resting position. However, x is now the vertical 
position of a moving pointer positioned by an experimenter. A human subject can 
observe y and x, and can push or pull the mass via an attached rod. He is instructed 
to keep the pointers as close as he can. This is an example of a manual tracking 
experiment. See Licklider (1960) for a full discussion of manual tracking experiments 
and models. 

Our simple-minded model for the subject’s behavior assumes that the force, x that 
he exerts on the mass is proportional to the tracking error, x - y. Thus f = y(x - y), 
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spring with stiffness k 

mass m 

drag c 

FIG. 19. Manual tracking. 

where y > 0. The subject pushes the block toward the pointer, and pushes harder 
when the error is greater. As was noted in Lecture 5, the mechanical system, call it H, 
that maps force into displacement (y = Hf) is described by the differential equation 

my” + cy’ + ky=f. (2) 

The man-machine system, G, that maps x into y can be diagrammed as in Fig. 20. 
The output, y, is “fed back” and subtracted from x. The input of H is proportional to 
this difference. The equation representing this state of affairs is 

v=Wx-Y) 

or 

Y = YH(X - Y>. (3) 

We wish to express G(s) in terms of H(s). This is surprisingly easy to do. Taking 
Laplace transforms on both sides of (3), we obtain 

Y(s) = YWKW) - Y(s)). 

Thus 

or 
y(sN + YH(s)) = YH(s) X(s) 

Y(s) = M(s) 

1 + YH(s) 
X(s)* 

Comparing this with Y(s) = G(s) X(s), we see that 

(4) 

G(s) = lw) 
1 + yH(s) ’ (5) 
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xY+++-T-y=Gx 
I 

FIG. 20. ‘A negative feedback model for manual tracking. 

Note that we could have saved a step by simply treating x, y, and H as numbers in 
(3), and solving for y in terms of x. This yields 

which is analogous to (4). The ratio on the right is G(s), shorn of its 9s. The notation 
in this theory is designed to permit such short cuts. 

The technique described in Lecture 7, applied to (2), shows immediately that H(s) 
is the rational function 

H(s) = (ms’ + cs + k)- ‘. (6) 

Plugging this into (5) and multiplying numerator and denominator by the polynomial 
in the denominator of H(s), we see that G(s) is the rational function 

G(s) = y(ms* + cs + k + y)-‘. (7) 

This example illustrates the principle that a network will have a rational transfer 
function whenever its components have rational transfer functions. A more 
complicated feedback system illustrating this principle is given in the first exercise. 

Determining g(t) when G(s) Is Rational 

It should now be clear that rational transfer functions are of sufficient importance 
to justify considerable subsequent attention in these lectures. In the remainder of this 
lecture, we shall see how to determine the impulse response, g, for a nonanticipating 
system, G, with transfer function G(S) = P(s)/Q(s). We shall always assume that P(s) 
is of lower degree that Q(s). This corresponds to the condition that g = GS is a bona 
fide function. We shall see that the roots of Q figure prominently in our formulas for 
g. Thus these roots must be known before g(t) can be calculated. 

Suppose that 

Q(s) = f ask (8) 
k=O 

has degree n > 1. Let r , ,..., T, be the (distinct) roots of Q(s). Then 

Q(s) = q,, fi (s - rj>? 
j=l 

(9) 
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where nj is a positive integer called the multiplicity of rj, and 

If n, = 1, then rj is called a simple root; if nj = 2, it is a double root, etc. I will 
consider successively three cases, 

Case 1: n simple roots, 

Case 2 : cascade of n identical RC filters, 

Case 3 : general case. 

Most applications fall within Case 1, and the formula for g(t) in that case is both 
simple and easy to derive. In Case 2, Q(s) has a single root of multiplicity n. This 
system is of considerable interest, and, in addition, it provides a basic formula needed 
in Case 3. As you might expect, the formula for g(t) in the general case is rather com- 
plicated. 

Case 1: n simple roots. In this case, 

Q(s) = qn fi (s - rj), 
j=l (10) 

and it can be shown that G(s) has a partial fractions expansion of the form 

G(s) = 2 aj/(s - rj). 
j=l 

Granted this, it is easy to see what the coefficients, a,, must be. Multiplying (11) by 
s - rj, we find that 

(s - rj) G(s) = aj + kTj a& - rjM - rd. 

(Note the change of summation index from j to k.) But 

(s - rj)/(s - rk) -t 0 as s-+rj, 

since rj f rk. Thus 

aj = liiy(s - rj) G(s). 

However, in view of (lo), 

(124 
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Thus (12a) is equivalent to 

(12b) 

Returning to (1 l), taking the inverse Laplace transform of both sides, and recalling 
that g = P-r(G) and that 9-l is linear, we obtain the expression 

g( t )  = ~ UjU-‘{(S- Tj)-‘}. (13) 
j=l 

But, in the course of working the exercise for Lecture 7, you will have shown that 

Y{p(t) er’}(s) = (s - r)-‘, (14) 

provided that re s > re K Thus 

LC’((s -r)-‘} =p(t)e”. (15) 

This result, in conjunction with (13), yields 

&T(t) = P(t) i aj exP(rjt), 
j=l 

(16) 

where exp(z) = e’. Thus we have proved the following theorem. 

THEOREM 1. Equation (16) gives the impulse response corresponding to G(s) = 
P(s)/Q(s), when the roots, rl, r2 ,..., rn, of Q(s) are all simple. The coeficients aj are 
given by the alternative formulas (12a) and (12b). 

Case 2 : Cascade ,of n identical RC filters. The system to be considered can be 
diagrammed as in Fig. 21. Each stage is an RC filter with transfer function 
(bs + I)-‘. The cascade, G,, is called an n-stage RCJlter. Clearly 

G,(s) = (bs + 1))“. (‘7) 

The denominator has one root, r = -b-l, of multiplicity yt. 

FIG. 21. An n-stage RC filter. 
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THEOREM 2. The impulse response, g, = G,6, is 

n I 
s,(t) = 44 b-” (nt- l)! cuba (18) 

For n > 1, g,(O) = 0, g,(t) rises to a peak at fP = (n - l)b, and then falls off to 0. 
The case n = 3 is illustrated in Fig. 22. To see that g,(t) -+ 0 as t + cc, recall that 

eUb = c (t/by/j! 
j=O 

> (f/b)“/& 

hence 

eeub < n! b”/t” 

and 

for t > 0. Clearly n/t + 0 as t -+ 00, so g,(t) + 0 too. 

Proof of Theorem 2 by mathematical induction. When n = 1, (18) reduces to 

gl(t) = p(t) b- ‘eeqb, 

which is correct, since the expression on the right is, indeed, the impulse response of a 
single RC filter. Thus (18) is valid for n = 1. 

My next move may surprise you. I shall show that validity of (18) for some 

t,=Zb 

FIG. 22. Impulse response of a 3-stage RC filter. 

480/23/1-S 



64 M. FRANK NORMAN 

integer, say, n = 8, implies its validity for the next integer, n = 9. A cascade of 9 
systems is just a cascade of 8 cascaded with one more. Moreover, cascades of 
systems correspond to convolutions of impulse responses. Thus g, = g, * g,. Since 
we are assuming that (18) holds for n = 8 and we know that it holds for n = 1, it 
follows that 

gs(t) = Irn gl(t - u) g&) du 
-m 

-+uUbUle-t4b & 

b-’ 
z-e 

7! 
u7 du 

b-’ 
=TFtse-ub 

for t 2 0. Hence validity of (18) for n = 8 implies its validity fo n = 9, as claimed. 
There is, of course, nothing special about 8 and 9. 

The remainder of the proof is like the fall of a row of dominos. We know that (18) 
is valid for n = 1. Thus it is valid for n = 2. Thus it is valid for n = 3, thus for IZ = 4, 
and so on for all positive integers. This type of argument is called mathematical 
induction. This completes the proof of Theorem 2. 

We may combine (17) and (18) into a single equation as follows, 

I 

n 1 

9 p(t) b-” (dIl)! emub (s) = (bs + I)-“. 
I 

(19) 

Multiplying both sides by b” and recalling that F is linear, we obtain 

I 
n 1 

9 ,u(t) (ntI1)! emub (s) = (s + b-l)-“. 
I 

If we let r = -b- ‘. this becomes 

I 

n 1 

LY p(t) (nt:l)! err (s) = (s-r)-“. 
I 

(20) 

Our derivation establishes (20) only for r real and negative; however, it can be shown 
by other methods that (20) is ‘valid for arbitrary complex numbers, r, provided that 
re s > re r. Equation (20) is equivalent to 

n I 

y-‘{(s - r)-“} =p(t) (nt~l)! e”. (21) 

This equation is the key to our handling of the general rational transfer function. 
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Case 3: General case. Here we place no restriction on the multiplicities, nj, of 
the roots, rj, of Q(s). In this case, G(s) = P(s)/Q(s) admits a partial fractions 
expansion 

“j 
G(S) = ;‘- 1‘ ajk(s - rj)pk, 

,z k:l 

which generalizes (11). Applying 9-l to both sides, and using the linearity of 9-l 
and Eq. (21), we obtain 

g(t) = 2 q ajkp(t) 

k 1 

(:A)! 
exp(rjt), (22) 

or 

where 

g(t) =/l(t) 2 pj(t)exP(rjt)7 
j=l 

(23) 

Pj(t) = 2 ajk 
tk-l 

k=l (k - l)! (24) 

is a polynomial. We will give a formula for a,, at the end of the lecture. The detailed 
expression, (24), for P,(t) will not be needed in our subsequent work. However, we 
shall make essential use of (22) and (23). The following theorem summarizes our 
results. 

THEOREM 3. rf G(s) = P(s)lQ( 1, s w h ere P(s) is of lower degree than Q(s), then 
g(t) is giuen by (23), where Pi(t) is a polynomial and r,,..., rv are the roots of Q(s). 

A difficulty with (23) and even with the special case (16) is that these formulas 
presuppose that the roots of Q(s) are known precisely, whereas, if the degree of Q(s) 
exceeds two, it may be difficult or impossible to determine these roots. As an 
indication of this problem, I mention that the analogs of the quadratic formula for 
cubic and quartic polynomials are much more complicated, and there is no such 
formula for polynomials of degree 5 or greater. In the next lecture we shall see that 
certain important qualitative properties of g(t) can be inferred directly from G(s) 
without first deriving an explicit formula for g(t). 

Two Technicalities 

1. Formulas for ajk in Cast? 3. Let 

G,(S) = (S - rj)“j G(S). 
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It can be shown that 

and that, for 1 < k ( nj, 

Ujk = (I!)-’ (u”/u!s’) Gj(r/), 

where 1 = n, - k. These formulas are stated for the sake of completeness. We will not 
need them in these lectures. 

2. Phony roots. Suppose that 

and 
P(s) = s + 2 

Q(s)=s*+~s+~=(s+ l)(s+2). 

The roots of Q(s) are rl = -1 and r2 = -2, and Theorem 1 yields 

g(t) =,u(t)(a,e-’ + u2emZf), 

where a, = 1 and a2 = 0; that is, 

(25) 

g(f) = p(t) e-‘. (26) 

Obviously (25) conveys a misleading impression of the nature of g(t), whereas (26) 
clears the matter up. We could have arrived at (26) more directly if we had cancelled 
the “phony factor,” s + 2, of P(s) and Q(s), corresponding to the “phony root,” -2, 
of Q(s). 

Generalizing from this example, suppose that P(s) and Q(s) have no common 
roots. Then, in Case 1, all of the coefficients, Uj, in (16) are nonzero. In Case 3, all of 
the leading coefficients, a,,, of the polynomials Pj(t) are nonzero, so the degree of 
P,(t) is nj - 1. 

Exercises 

1. Consider the feedback system, G, delined by Fig. 23. Express G(s) in terms 
of H,(s) and H,(s). Show that G(s) is rational if both H,(s) and HZ(s) are rational. 

2. Find h(t) and g(t) corresponding to the transfer functions given in (6) and 
(7). Can g(t) have an oscillatory factor (sin wt) even if h(t) doesn’t? Must g(f) have 
such a factor if h(t) does? 

3. Let y(t) be the voltage across the capacitor in an RCL circuit, let q(t) be the 
charge on the capacitor, and let i(f) be the current in the circuit. We know that y(t) = 
q(t)/C, hence y’ = q’/C, or i = Cy’. We can consider i(t) as the output of the RCL 
circuit corresponding to the voltage input, x(t). This delines an invariant linear 
system A4, i = Mx. Determine M(s) and m(t). (Hint: M is a cascade of the systems 
y = Gx and i = Cy’.) 
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FIG. 23. A feedback system. 

Lecture 10. Determining the Shape of g 

The formulas for g = G6 developed in the last lecture may be difficult or 
impossible to apply in certain cases. Moreover, even when we can apply these 
formulas, the resulting expressions may not immediately suggest the shape of g. Thus 
it is highly desirable to find ways of inferring the shape of g directly from G(s), 
without actually deriving an explicit formula for g. That will be our main goal in this 
lecture. As in Lecture 9, we assume that G is nonanticipating. 

One topic to be considered is stability. We say that G (or g) is stable if g(t) + 0 as 
t + a. Otherwise it is unstable, Clearly stability or instability is an important 
component of the shape of g. Another component to be considered is the amount of 
oscillation of g, indexed by the number of zeros of g. Finally, to compose a picture of 
g, we must know whether or not g(0) = 0. We shall begin by obtaining two simple 
formulas for g(0). 

Formulas for g(0) 

Suppose that g is of exponential order, so that its Laplace transform, 

G(s) = Y{ g}(s) = f” e-srg(t) dt, 
JO 

is well defined for sufficiently large real values of s. (Review the theorem in 
Lecture 8, if necessary.) 

THEOREM 1. g(0) = lim,+, sG(s). 

Proof. Clearly 

sG(s) = 
I 
co seKS’g(t) dt 

0 

= 
1 
m b-‘e-@g(t) dt, 

0 

where I have written b-’ in place of s. The term involving b is, of course, the impulse 
response, gb(t), of an RC circuit. The area under this function is unity and the 



68 M.FRANKNORMAN 

function decreases by a factor e-’ as t goes from 0 to its time constant, b. See 
Fig. 24. As b + 0 (or s = 6-l + co), g, approaches 6, so 

Thus sG(s) -P g(O), as was to be shown. 
Throughout the remainder of the lecture, we will assume that G(s) = P(s)/Q(s) is 

rational and (as usual) n > m, where m and n are the degrees of 

and 

(2) 

Q(s) = ? qksk. 
kT0 

(3) 

COROLLARY OF THEOREM 1. Zfn=m+1,theng(O)=p,/q,.Zfn>m+l,then 
g(0) = 0. 

Proof: For large S, the leading terms, pmsm and q”s”, of P(s) and Q(S) 
predominate, so 

G(s) - h,tsmY(q,s”) 

b-le-’ 

b 

FIG. 24. Impulse response of an RC circuit. 
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and 

SW) - h,hW-“-I 

as s-+ co. Thus 

g(O) = ?i”, SW) = pm/q, 

ifn=m+l,andg(O)=Oifn>m+l,aswastobeshown. 

Stability 

Recall that stability means g(t) + 0 as t -+ co. The system eventually quiets down 
after it is “kicked.” It tuns out that G is stable if and only if all the roots of Q have 
negative real parts. This is very surprising the first time one hears it, but the 
significance of negative real parts becomes immediately apparent in the course of the 
proof. 

THEOREM 2. G is stable if and only if the roots of Q(s) all have negative real 
parts. 

I shall only prove that negative real parts imply stability. The converse statement, 
stability implies negative real parts, does not, by the way, apply to phony roots. If 
g(t) is stable, one can infer only that the “essential” roots of Q(s) (those not common 
with P(s)) have negative real parts. 

Proof that negative real parts imply stability. Equation (22) of the last lecture 
yields 

g(t) = + + aj, (ktI1,, exp(rjt) 
j:, k:, 

for t > 0. Moreover, 

I exP(rjtl = exP(ojt>, 

where oj = re rj. Since aj < 0, 

tk- ’ exp(aj t) --t 0 

as t + co (see the discussion following Theorem 2 of the last lecture) for all j and k. 
Hence g(t) + 0, as was to be shown. 

I have already mentioned the difficulty of finding roots of some polynomials of 
degree greater than 2. Fortunately, it is relatively easy to determine whether the roots 
all have negative real parts, using an algorithm due to Routh (see Schwarz 
& Friedland, 1965, pp. 406-408). This algorithm can be applied to polynomials of 
any degree. For polynomials of degree 2, 3, and 4 it leads to the following theorem. 
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THEOREM 3. Suppose that Q(s) is given by (3), where n = 2, 3, or 4. Then all 
roots of Q(s) have negative real parts if and only if the following conditions are 
satisfied. 

n = 2: All qk’s have the same sign. 

n=3: All qk’s have the same sign, and 

4142 > [7043* (5) 

n=4: All qk’s have the same sign, and 

9243 - q1q4 > 4:40/41* (6) 

For a more thorough discussion of stability, see Chapters 11 and 12 of Schwarz 
and Friedland (1965). 

Stability and Feedback 

Some interesting applications of this theory arise in the context of the simple 
feedback scheme shown in Fig. 20. Our derivation showed that, for any invariant 
linear system H, 

G(s) = YW) 
1 + W(s) * 

If H is a simple mechanical system, as in a manual tracking model, 

H(s) = (ms’ + cs + k)- I, (8) 

so 

G(s) = y(ms’ + cs + k + y)-‘. (9) 

Assuming, as usual, that m, c, k, and y are positive, all roots of the denominators of 
H(s) and G(s) have negative real parts, according to Theorem 3. Thus, by Theorem 2, 
both H and G are stable. 

The feedback in this example is negative. A comparable system with positive 
feedback is obtained by changing the minus to a plus on the left in Fig. 20. 
(Obviously the new system is not a model for manual tracking!) Proceeding just as in 
the case of negative feedback, we obtain 

G(s) = y(ms2 + cs + k - y)-’ (10) 

for the mechanical system with positive feedback. The coefficients in the denominator 
have the same sign if and only if k > y; hence, by Theorems 2 and 3, the positive 
feedback system is stable if and only if the amplification factor, y, is less than the 
stiffness, k, of the spring. 

Returning to the system with negative feedback, one is tempted to speculate that 
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stability of H implies stability of G. This generalization is incorrect. Suppose, for 
example, that H is a three-stage RC filter, so that 

H(s) = (bs + 1)-j. (11) 

The single root, -b-l, of the denominator is negative, so H is stable. Plugging (11) 
into (7) and simplifying, we obtain 

G(s) = y((bs + 1)3 + y]-’ 

= y[ b3s3 + 3bZsZ + 3bs + 1 + y] - ‘. 

All of the coefficients in the denominator are positive, so, by Theorem 2 and 3, G is 
stable if and only if (5) holds, that is, 

(3b)(3b2) > (1 + y)b3. 

Cancelling b3, we see that G is stable if y < 8. If y > 8, then G is unstable, even 
though feedback is negative and H is stable. 

A Formula for IF g(t) dt 

For stable systems with rational transfer functions, it can be shown that g(t) 
converges to 0 (as t -+ co) sufficiently rapidly that 

5 om I &)I dt < ~0. (12) 

If g is any impulse response satisfying (12), the integral in (1) is well defined for all s 
with nonnegative real part. Taking s = 0, we obtain the useful formula 

I O” g(c) dt = G(0) 
0 

(13) 

for the integral of the impulse response. Recalling that 

W) = I’ g(u) du 
0 

(14) 

(see (9) in Lecture 6), we see that (13) is equivalent to the formula 

GP(~ > = G(O) 

for the asymptote of the step response, G,L 

Oscillation 

(15) 

Stability or instability is an important aspect of the shape of g. Another is the 
degree to which g oscillates or “rings.” A straightforward measure of the oscillation 
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of g is the number of times it hits the nonnegative t axis, that is, the number of 
distinct nonnegative zeros of g. For example, the impulse response shown in Fig. 25 
has two nonnegative zeros. Let 

fg = number of nonnegative zeros. 

We know that #g = 0 for RC circuits. For RCL circuits, 

#g= 1, if d=6*-4~20, 

= co, if d < 0. 

In this example; #g < co when the roots of the characteristic polynomial, Q(s), are 
real. The next theorem implies that #g < co in any system with rational transfer 
function for which all roots of Q(s) are real. 

THEOREM 4. (Oscillation Theorem). Suppose that G(s) = P(s)/Q(s), where all 
roots of Q(s) are real. Let n = degree Q. Then 

#g < n. (16) 

Furthermore, the same inequality applies to any derivative of g, 

#g’ < n, (17) 

#g” < n, 

etc. 

Clearly, g doesn’t oscillate much at all if Q(s) has real roots and low degree. 
There is one obvious exception to the theorem. If P(s) = 0 for all s, so that 

G(s) = 0 for all s, then g(t) = 0 for all t. Thus, to be completely precise, we must 
explicitly assume that P(s) is not identically zero. 

The proof of Theorem 4 is a bit too difficult for inclusion here. It is given in the 
Appendix at the end of these notes. 

Hill’s Model 

To illustrate the methods introduced in this lecture, we shall analyze a system, G, 
described by Fig. 26. Here the output, v, of yi H, has a direct path to the final output, 

FIG. 25. An impulse response with two nonnegative zeros. 
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FIG. 26. A model with an inhibitory feedforward path. 

y, and an indirect, inhibitory, “feedforward” path through yzH,. We shall assume 
that H, and H, are RC filters with time constants b, < b,. Naturally, yi and yz are 
positive constants (amplification factors). 

A scheme of this sort is Hill’s (1936) model for the generation of nerve impulses. 
In that model, x is stimulating current, v is the (hypothetical) excitation produced 
thereby, and u = y2 H, v is a (hypothetical) accommodating threshold. More precisely, 
II and v are departures of the threshold and excitation from resting levels, U, and v,,. 
A nerve impulse is generated when v + u,, hits u + uO, i.e., y = u - u hits u,, - u,, . In 
addition to b, < b,, Hill assumed yz = 1. 

Solomon and Corbit (1974; see Panel B of Fig. 3, p. 126) incorporated a scheme of 
this kind in their theory of motivation. In their theory, x(t) is the amount of 
stimulation at time t (e.g., by opiate injection), u and u are opponent motivational 
processes with opposite affective tone, and y = u - u represents net affect. Solomon 
and Corbit did not make precise assumptions about H, and H,, and some of their 
ideas would seem to require that H,, at least, be nonlinear. 

Our analysis of G begins with the calculation of its transfer function. Clearly 

= ylH,x - Y~Y~HIHA 

hence 

G(s) = ~,H,(s)(l - ~zH,(s)), 

or 

y,tb,s + 1 - ~2) 
G(s)= (b,s t l)(b,s t 1)’ (18) 

We shall now see how much information about g can be extracted from (18) via 
the methods of this lecture. The degrees of the numerator and denominator of G(s) 
are m = 1 and n = 2, and the leading coefficients are p1 = y1 b, and q2 = b, b,. Hence 
the Corollary of Theorem 1 yields 

In particular, g(0) > 0. 
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The roots of the denominator are real and negative, so g(t) -+ 0 as t + co by 
Theorem 2, and 

#g < 2 

and 

#g’ < 2, 

by Theorem 4. The only four shapes consistent with this information are shown in 
Fig. 27. 

Can some of these shapes be excluded? By (13), 

s mg(t)dt=Ylcl -Y*>* 
0 

If yz > 1, the integral is less than or equal to zero, and the first three shapes can be 
ruled out. In fact, the same is true even if y2 < 1, but to show this we must appeal to 
Theorem 1 of the last lecture. According to that theorem, 

g(t) = a, exp(-t/b,) + a, exp(-t/b;) (19) 

o~g=o,#gs=l _ t 
f(\ Xg=l.#g'=l t 

I+. 2% The four shapes with g(0) > 0. #g < 2, #g’ < 2, and g(o3) = 0. 
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for t > 0, where 
P(-b; ‘) 

‘*= b, - b, 

Yl Y2 -~ 

= b,-b, 

< 0, 

since we have assumed b, > b,. It follows from (19) and b;’ < b;’ that 

dWwWb2) -+ a2 

(20) 

as t --P co, hence g(t) < 0 for t sufficiently large. Consequently g must look like the 
bottom panel of Fig. 27. 

Exercises 

All of these problems relate to the Hill-Solomon-Corbit scheme considered above. 

1. Use (15) to obtain a formula for Gp(co). 

2. According to (14), Gp(O) = 0 and (Gp)‘(t) = g(t). Use these facts, together 
with the above picture of g(f) and your formula for G,D(co), to sketch Gp(t) for 
y2 < 1, for y2 = 1, and for y2 > 1. 

3. Work out a formula for a, analogous to (20). 

4. Use (14) and (19) to obtain a formula for Gp(t). 
5. Take y1 = 1, y2 = 0.5, b, = 0.1, and b, = 0.2 in your formula for Gp(t), and 

tabulate this function for t going from -1 to 2 in increments of 0.1. Graph your 
results. 

6. Let x(t) be a pulse of unit intensity and unit duration, 

x(t) = 1, if O<t<l, 

= 0, if t<Oort>l. 

Clearly x(t) =,u(t) -,u(t - 1). By linearity and invariance, 

Gx(t) = G/i(r) - Gp(t - 1). (21) 

Use this equation and the table of Gp(t) constructed in Exercise 5 to construct a table 
of Gx(t) for I going from 0 to 2 in increments of 0.1. Graph your results. This graph 
will resemble Fig. I on p. 120 of Solomon’s and Corbit’s article. 

Lecture 11. Frequency Response and Fourier Transform 

We have seen that invariant linear systems map complex sinusoids into complex 
sinusoids of the same complex frequency. The only difference between input and 
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output sinusoids is a multiplicative factor, G(s), the transfer function of the system. 
Symbolically, 

GeSt = G(s) est. (1) 

This holds for any complex frequency, s = u + iw, for which the integral 

G(s) = 9{ g}(s) = cc0 epstg(t) df (2) 
J 

makes sense. If u = 0, the integrand has absolute value 

I e-‘“W = I &)I, 

and the integral is well defined whenever 

I 

co 

I dOI df < 00. (3) -a, 

This condition is satisfied if, for example, G is nonanticipating and stable, and G(s) is 
rational. We shall assume throughout this lecture that (3) is satistied. 

Taking u = 0 in (l), we obtain 

GeiWt = G(im) e’“‘. (4) 

The nice thing about (4) is that it involves the “ordinary” frequency, w, which is a bit 
more intuitive than the genera1 complex frequency, s. The function G(h) of w  is 
termed the frequency response fumtion of the system G. The full significance of this 
function becomes clearer if we write it in polar form 

where 

G(b) = p(o) eis’w), (5) 

~(4 = I GW-0 (6) 

and 

q(w) = arg G(h). 

Plugging (5) into (4), we see that 

GeiWt = p(w) eiht+s(w))s 

(7) 

The imaginary part of this equation is 

G sin wt = p(o) sin(wt + p(o)), (8) 

which brings us back into the realm of real sinusoidal inputs and outputs. Equation 
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(8) shows that the amplitude of an input sinusoid is altered by the factor p(w), and 
the phase is altered by p(o). The functions p(w) and q(o) are called the gain and 
phase shift, respectively. Graphs of p(w) and log p(w) against log o are called Bode 
diagrams. Use of log w  presupposes o > 0. It is not difficult to show that 
~(-0) = p(o) and q(--w) = -v(w). Thus negative frequencies need not be con- 
sidered. 

An unknown transfer function, or, equivalently, its Bode diagram, can be deter- 
mined experimentally. One simply compares input and output sinusoids for a number 
of different frequencies, o, and interprets the results in the light of (8). 

One small point: Eq. (7) only determines the phase shift up to an additive integer 
multiple of 27c, and, as far as (7) is concerned, this multiple can be different for 
different values of w. In other words, if n(o) is any integer-valued function of w, then 

@(o) = p(w) + 2mz(w) (9) 

is just as good as p(w) from the viewpoint of (7). Such nonsense is ruled out by 
requiring that the phase shift depend continuously on o. If rp and 6 in (9) are 
continuous, then n(w) must also be continuous. But the only continuous integer- 
valued functions are constants, n(w) = n, for some no. Then (9) reduces to 

q?(w) = qqw) + 27zn,. 

This is the only admissible transformation of the 
For w  = 0, eiw’ = 1 is a constant (dc) input. r 

corresponding gain and phase shift are 

~(0) = [” g(t)dt 
I’--00 

and 

40) = w Irn g(t) dt, 
-cc 

phase shift. 
aking s = 0 in (2), we see that the 

(10) 

or 

do) = 0, if 
I 
O” g(t) dt > 0, 
-m 

I 
m = f 7z, if g(t) dt < 0. 
-cc 

(11) 

Thus the integral of g can be inferred from the dc point (or dc limit) of the Bode 
diagram. 
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Examples 

1. n-stage RC filter. For this system, 

G(s) = (bs + l)-“, 

SO 

G(h) = (1 + ibw)-“, 

and 

p(w) = (1 + bW-“/2. 

Clearly p(w) 1 0 as w  t co. This is a “low-pass filter.” Note that 

1 + b2m2 = b2w2(b-*co-* + l), 

(12) 

(13) 

so 

p(m) = b-“w-“(b-*co-’ + l)-“* 

and 

logp(w) = -n log b - n log w  - (n/2) log(b-*K2 + 1). 

As w  + co, the final logarithm on the right approaches log 1 = 0, hence 

log p(o) + -n log b - n log w. 

Thus the Bode diagram of p (see Fig. 28) approaches the straight line with slope -n 
and y intercept --rr log b for large frequencies. 

To obtain the phase shift, we multiply numerator and denominator in (12) by the 
complex conjugate of the denominator. This yields 

(1 - ibu)” 
G(iw) = (1 + bzwz)” - 

The denominator is real and positive, so it has no effect on the argument, p(o), of 
G(h). Thus 

p(w) = arg( 1 - ibw)” 

or 

q(w) = n arg( 1 - ibo). (14) 

As Fig. 29 shows, the argument of 1 - ibw goes from 0 to -n/2, hence (D(W) goes 
from 0 to -nn/2, as w  goes from 0 to 03. Since p(w) < 0, the output may be 
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y=-2x-Zlogb 

y = log p’w1 ::.I t 
Y  

x = log w - 

FIG. 28. Graph .of log p(w) versus log w for a 2-stage RC filter. 

regarded as lagging behind the input (it + q(w) achieves the value 5, say, later than 
wt). The lag increases with frequency, as can be seen from Fig. 29. 

Combining our findings concerning p(o) and q(w), we may plot the path of G(io) 
in the complex plane as w  goes from 0 to co. Such a plot is called a Nyquist diagram. 
Figure 30 is a Nyquist diagram for a three-stage RC filter. Arrows point in the 
direction of increasing w. 

2. RCL circuit. For this system, 

G(s) = (US’ + bs + 1)-r. 

We shall restrict our attention to the oscillatory case, in which 

d=b2-4a<O. 

Then 

G(s) = [a(s - s+)(s -se)]-', 

FIG. 29. Phase lag increases with frequency. 

480/23/1-6 
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FIG. 30. Nyquist diagram for a 3-stage RC filter. 

where 

and 

It follows that 

hence 

G(iw) = [a(i(w - wo) + ao)(i(w + wo) + oo)] - ‘, 

p(w) = [a’(u; + (0 - w,>‘>(u~ + (0 + wo)‘>]- 1’2. 

The following theorem describes the main features of this function for w  > 0. 

THEOREM. Suppose that d < 0. If w0 < a0 then p(w) is a decreasing function. If 
w. > ao, then p(w) rises to a maximum at w, = (wi - a:)“’ and decreases thereafter. 
In either case, p(w) + 0 as w -+ co. 

To prove the theorem, one can take the natural logarithm of p(w), differentiate, and 
consider whether the resulting expression is zero for any positive w. I shall omit 
details. 
- The second case described in the theorem is the phenomenon of resonance, 
illustrated in Fig. 31. Clearly 

WI = <w; - ay2 

< (qy2 

= 00. 
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FIG. 31. Gain in an RCL circuit with w. > o. 

Thus the frequency, ml, of maximal responsiveness is less than the frequency, oO, of 
free oscillation after an impulse. (The impulse response, in our present notation, is 

for t > 0.) 

g(t) = (awJ ’ eeuot sin cc0 t 

3. Integrator. The input and output of the integrator are supposed to be related 
by y’ = x. Taking x = est and y = G(s) es’ in this equation yields G(s) = s- ‘, as we 
noted in Lecture 7. This derivation applies to any nonzero s. For s = iw, we obtain 

hence 

G(b) = (iw)-’ = -iw-‘, 

p(w) = 0-l 

and 

q(w) = -x/2 

for w  > 0. 
It is harder to interpret these functions than it was to derive them. The impulse 

response of the integrator is the unit step function, g = ,u. This function is unstable, 
condition (3) fails, and the integral in (2) is not well defined for s = io (since 
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= am,-’ (1 - ePiW’), 

and the limit does not exist). By the same token, the familiar recipe 

y(t)=[’ g(t-u)eSUdu 
-co 

(15) 

can’t be used to calculate the response of the integrator to the input x(u) = es” when 
re s = 0. However, (2) and (15) are perfectly all right if re s > 0. Thus, for the 
integrator, the transfer function rests on firmer theoretical ground than the frequency 
response function. 

Flicker Detection 

Suppose that a human subject is asked to judge whether or not a light is flickering. 
The intensity of the light is 

L,(l + m sin wr), 

where Lo is the average intensity and m controls the depth of modulation. For each 
Lo and w, the experimenter determines the smallest value of m at which flicker is 
visible. 

Sperling (1964) ( see also Chap. XIV of Cornsweet, 1970) describes a simple model 
for this situation. It assumes that the oscillatory component, 

x(t) = L,m sin wt, 

of the light is processed by a linear system, G, that produces an output 

140 = G-W 
= Lo mG sin wt 

= L,mp(o) sin(ot + p(w)). 

The subject perceives flicker if and only if the amplitude, L,mp(o), of y(t) equals or 
exceeds a threshold, which we may set equal to 1. The smallest value of m at which 
flicker is visible satisfies 

L,mp(w) = threshold = 1. 

(Let me digress for a moment to note that, when data from flicker-fusion 
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experiments are considered within this theoretical framework, it is clear that p(w) 
depends on L,, as well as o. The more general model of Sperling & Sondhi (1968) 
describes the effect of variation in L,. We shall regard L, as fixed throughout the 
present discussion.) 

Since L, is prescribed by the experimenter and m can be measured, it is possible to 
infer p(w) from such an experiment. However, the experiment appears to yield no 
information about q(w). This raises the question: Is there any information in cp 
beyond what is contained in p? In other words, does p determine rp, and thus G(io) 
and g? The following simple example shows that the answer is “no.” 

Let G, and G_ be nonanticipating invariant linear systems with transfer functions 

G,(s) = 
Sk2 

(s + I)(s + 3) * 

Since 

/iw f  21 = (co" + 4)"2, 

both systems have the same gain, 

p(o)= 
(co2 + 4y2 

(w’ + 1)“2 (02 t 9)“2. 

However, the impulse responses, g+(f) and g-(t), are quite different. As a conse- 
quence of Theorem 1 of Lecture 9, 

g+(f) = fee’ t +eC3’ 

and 

g-(f) = - +e-‘+ $ee3’ 

for t > 0. These functions are graphed in Fig. 32. 

FIG. 32. Two impulse responses with the same gain. 
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Thus p doesn’t determine o,, G(io), or g. Consequently, identification of an impulse 
response underlying visual detection requires consideration of inputs other than 
sinusoids. Roufs and Blommaert (in press) have recently derived an estimate of g 
from data on detectability of inputs consisting of two pulses of unequal magnitude. 

Fourier Transform 

Under rather general conditions, the entire Laplace transform theory can be 
specialized to the imaginary axis, s = iw. If 

I 
m Ix(t)1 df < co, (16) 
-cc 

then 

X(iw) = Ip{x}(iw) = jrn ePiw’x(t) dt (17) 
-cc 

makes sense. This quantity is called the Fourier transform of x. The meaning of the 
Fourier transform, like that of the more general Laplace transform, is contained in 
the inversion formula 

m x(t) = (27r)-’ 
I 

eiw*X(iw) do, (18) 
-cc 

which is valid if x’(u) exists and is continuous in some interval, t-c < u < t + E, 
around t. Thus X(iw) describes “how much eiw’ is present in x(t).” Taking s = io in 
(2), we see that the frequency response function, G(iw), is the Fourier transform of 
the impulse response. Similarly, 

Y(s) = G(s) X(s) 

yields 

Y(iw) = G(iw) X(io), (19) 

which says that the Fourier transform of the output is the Fourier transform of the 
input times the frequency response. 

These aspects of the “Fourier theory” are just special cases of the “Laplace 
theory.” However, the following important theorem is special to Fourier analysis. 

PARSEVAL'S THEOREM. Suppose that x(t) satisfies both (16) and 

5 
00 

x(t)* dt < co. 
--co 

(20) 
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Then 

Irn x(t)* dt = (2a)-’ Irn IX(iw)l* do. (21) 
-cc -co 

A proof of Parseval’s Theorem is given on pages 149 and 150 of Schwarz and 
Friedland (1965). 

The integral on the left in (21) and its square root are the most useful measures of 
the total magnitude of the function x(t). In some physical applications, the integral is 
proportional to the energy associated with x(t), and we may use the energy 
terminology metaphorically in the general theory. Equation (21) shows how the 
energy of x(t) can be apportioned to different component frequencies. The energy 
corresponding to a small band of frequencies near w  is 

(2n)-’ (X(iw)12 dw. 

Here dw is the width of the. band expressed in radians, and (2n)-’ dw is the 
bandwidth in cycles. Dividing out this factor, we see that (X(iw)l’ is the energy per 
unit bandwith or energy density. 

Taking absolute values in (19) and squaring, we find that 

1 Y(iw)l’ = p(w)’ IX(iw)(2. (22) 

The energy density of the output is the energy density of the input times the squared 
gain of the system. 

APPENDIX. PROOF OF THE OSCILLATION THEOREM 

This appendix gives a proof of Theorem 4 of Lecture 10. 
According to Eq. (23) of Lecture 9, 

g(t) = p(t) 2 Pi(t) exp(r#). 
j=l 

(1) 

All of the roots, rj, of Q(s) are assumed to be real. The polynomial Pj(t) has degree 
at most nj - 1, where nj > 1 is the multiplicity of rj. We may assume, without loss of 
generality, that P(s) and Q(s) have no common roots, in which case the degree of 
P,(t) is exactly nj - 1. (To say that the degree of Pj is zero means that Pj(t) = c for 
all t, for some nonzero constant c.) The sum of the multiplicities, nj, is the degree, n, 
of Q(s)> 
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We wish to prove that g(t) has fewer than n zeros for f > 0. Since every such zero 
is a zero of 

h(t) = ‘l Pj(t) eXP(rjt), 
,rl 

(2) 

it suffices to prove that h(t) has fewer than n zeros for -co < t < 03. At this point it 
is convenient to forget about impulse response functions, and to consider an arbitrary 
function, h(t), defined by (2), where Pi(t) is a polynomial. Let nj be defined by 

nj = degree Pi + 1 (3) 
or, equivalently, 

degree Pi = nj - 1. (4) 
Finally, let 

nh= + n. 
,T, J’ (5) 

where the subscript “h” indicates that n,, depends on h. We wish to show that h has 
fewer than n,, zeros. Since n,, can be any positive integer, we must show that each of 
the following statements is correct: 

S,(“statement n”): If n, = n, then h has fewer than n zeros. 

We must show that S, is true, S, is true, S, is true, etc. 
We shall use the technique of mathematical induction. (We used this approach 

previously in the proof of Theorem 2 of Lecture 9.) For an inductive proof, it suffices 
to establish two things: 

(A) S, is true. 

(B) For any n, truth of S, implies truth of S,, 1. 

Proof of (A). This is easy. If n,, = 1, it follows from (5) and nj > 1 that v = 1 and 
n, = 1. Thus, by (2), 

h(t) = PI(t) exp(r, t), 

and, by (4), degree P, = 1 - 1 = 0. Thus Pi(t) = c # 0 for all t, and h(t) has no zeros, 
as was to be shown. 

Proof of (B). Suppose that S, is true for some positive integer, n, and let 
nh = n + 1. We shall show that h(t) has at most n zeros. We may, and shall, assume 
that ru = 0. For h(t) has the same zeros as 

h*(t) = h(t) exp(-r,t) 

= + Pi(t) exp((rj - r,)t), 
,s 

and the vth exponential constant for this function is rC - F-~, = 0. 
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Differentiating (2), we obtain 

h’(t) = TT Q,(t) exp(rjt), 
Jr, 
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(6) 

where Q,(t) is the polynomial 

Q,(t) = P:(t) + rjPj(t). 

The rj’s are all different, and r, = 0, so rj f 0 forj < v. It follows easily from this that 

degree Qj = degree Pi, j < v. (7) 

Also 

Thus, if degree P, > 1, then 

degree Q, = degree P, - 1. 

Comparing (2) and (6), and using (3), (5), (7), and (8), we conclude that 

rlh’ - -n,-1 

=(n+ l)- 1, 

or 

nhC = n. 

(8) 

(9) 

This is also valid if degree P, = 0, for, in that case, Q,(t) = 0 for all f and 

L’- I 
h’(t) = K‘ Q,(t) exp(rjt). 

jr, 

Thus (9) is valid unconditionally. It then follows from S,, which we are assuming, 
that h’ has fewer than n zeros. 

Our objective is to show that h has fewer than n + 1 zeros. We shall do this by 
assuming the contrary and obtaining a contradiction. Between any two zeros of h 
there is a zero of h’. (This follows from the “mean value theorem of differential 
calculus.“) Hence, if h has n + 1 or more zeros, then h’ has n or more zeros, contrary 
to our conclusion in the previous paragraph. This contradiction establishes that h has 
fewer than n + 1 zeros. 

This completes the proof of (B), which was all that remained of the proof that h(t) 
has fewer than n,, zeros for -co < t < co. As we have noted, this implies that g(f) has 
fewer than n zeros for t > 0, where n = degree Q. 

480/23/i 7 
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The comparable assertions concerning g’(t), g”(t), etc., follow from what has 
already been done, since h’(t), h”(f), etc., are “just like h(t)” (compare, for example, 
(6) and (2)). 

This completes the proof of Theorem 4 of Lecture 10. 
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INDEX 

Standard notations are given in brackets. 

Absolute value [IzI, r], 23 
Argument [ arg(z), 6’1, 23 
Block diagram, 42 
Bode diagram, 77 
Characteristic equation, 35 
Complex frequency [s], 26 
Complex plane, 22 
Complex sinusoid [es’], 26 
Conjugate [r], 23 
Convolution I*], 41 

Coordinates, 
polar [r, 81, 24 
rectangular [x, y]. 22, 24 

Delta function [S], 16 
Differential equations, 

first and second order, 30 
Discriminant [d], 36 
Energy density, 85 
Exponential function 

le’, exp(z)l, 24 
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Feedback, 59, 66 
and stability, 7&71 

Feedforward, 73 
Filter, 49 
Flicker detection, 

Sperling model, 82 
Sperling-Sondhi model, 83 

Fourier transform 
[X(h), ~P{x}(iu~)[, 84 

Frequency response function [G(iw)[, 76 
of integrator, 81 
of n-stage RC filter, 78 
of RCL circuit, 79 

Gain [p(w)[, 77 
Generalized function, 17 
Homogeneity [(LZ)], 10 
Imaginary part [im z, ~1, 22 
Impulse response [ g], I6 

of amplifier, 21 
of cascade, 43 
of cascade of RC filters, 57, 63 
of differentiator, 2 1 
of integrator, 56 
of RC circuit, 21, 57 
of RCL circuit. 37, 40 
of shift, 21 
of sum, 42 
of system with rational 

transfer function, 62, 65 
oscillation, 67, 71-72 
shape, 67 
stability, 67, 69 

Initial value, 5 
Invariant system [(I)], I2 
Laplace transform [X(s), Y(x)(s)], 48 

and transfer function, 48 
linearity of, 56 
inverse, 55-56 
of convolution, 51 

Linear system [(Ll) + (L2), (L)], 10, 43 
Low-pass filter, 78 
Manual tracking, 58 
Mathematical induction, 64, 86 
Modulus [[z[[, 23 
Motivation, Solomon-Corbit theory, 73 
Natural frequency, 40 
Nerve impulse generation, 

Hill’s model, 73 
Nonanticipating system [(N)], 13 
Null input, 5, 44 

Nyquist diagram, 79 
Onset time If,]. 5 
Operator, 9 
Parseval’s theorem, 84-85 
Partial fractions expansion, 61, 65 
Phase shift [o(w)[, 77 
Phony roots, 66 
Radians, 24 
Real part [re z. x[. 22 
Resonance, 80 
Roots, 

simple, 61 
multiplicity, 61 

Routh’s algorithm, 69 
Shift, 11, 49 
Spatial patterns, 2&21 
Stable system, 67, 69 
Step response. 6, 41 

and impulse response, 41-42 
Superposition property [(Ll)[, 10, 18 

extended [(Ll”)], 19 
System [G], 9 
Systems, 

amplifier, 49 
differentiator. 49 
general integro-differential, 49 
in parallel (sum), 42 
in series or cascade, 42 
integrator, 21, 49 
RC circuit or filter. 2 
RCL circuit, 30 
shift, 1 I. 49 

Time constant [b], 3-4 
Transfer function [G(s)], 48 

of amplifier, 49 
of cascade, 50 
of cascade of RC filters, 57 
of differentiator, 49 
of general integro-differential system, 50 
of integrator, 49 
of RC circuit, 49 
of RCL circuit, 49 
of shift. 49 
of sum, 50 
rational, 50 

Transformation, 9 
Unit impulse [S], 16 
Unit step 1.~1, 6, 56 
Unstable system, 67 


