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A CENTRAL LIMIT THEOREM FOR MARKOV PROCESSES
THAT MOVE BY SMALL STEPS

By M. FRANK NORMAN
University of Pennsylvania

We consider a family X,? of discrete-time Markov processes indexed
by a positive ‘‘step-size”” parameter §. The conditional expectations of
AX.9, (AX,0)2, and |AX,9(3, given X9, are of the order of magnitude of ¢,
62, and 63, respectively. Previous work has shown that there are functions
S and g such that (X, — f(nf))/6% is asymptotically normally distributed,
with mean 0 and variance g(f), as # -0 and #nd — ¢ < . The present
paper extends this result to # = co. The theory is illustrated by an appli-
cation to the Wright-Fisher model for changes in gene frequency.

1. Introduction and overview. Let J be a bounded set of positive numbers
with infimum 0. For every 6 e J, let {X,’}, ., be a Markov process with station-
ary transition probabilities in a Borel subset /, of the real line R. The parameter
0 is an index of the magnitude of AX,’ = X7, — X,’. We will be concerned
with the asymptotic behavior of the distribution of X,’ as n — oo and § — 0.

The following assumptions, or their higher dimensional analogs, are in force
throughout the paper:

(1.1) E(AX,?| X,° = x) = Ow(x) + O(6?)
(1.2) Var (AX,? | X,? = x) = 6%s(x) + o(6?)
(1.3) E(JAX,’P| X, = x) = O(6%) ,

uniformly over x € ,. Thus the error terms in (1.1) and (1.2) satisfy

SupoeJ,:ceIg |O(02)I/02 < e
and
SUp,e s, |0(6%)]/6* — O
as @ — 0. Let I'be the closed convex hull of |J,., ,. We assume that I, approxi-
mates I as § — 0 in the sense that, for any x ¢ ,

(1.4) inf,.;, |y —x|—0

as @ — 0. The functions w and s are defined throughout 7, s is Lipschitz, and w
has a bounded Lipschitz derivative.
Under these assumptions the differential equations

J'(0) = w(f(1))
9'(1) = 2w'(f(1)9(?) + s(f(1))
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have unique solutions f(#) = f(¢, x) and g(r) = g(¢, x) with f(0) = xand g(0) = 0,
where x is an arbitrary point of 1. Suppose that x, € [, and X/ = x, a.s., and let
Z,0 = (X,° — f(n8, x,))[6% .

Let #(Z) be the distribution of a random variable Z, and let .#{, ¢°) be the
normal distribution with mean g and variance ¢®. It has been established previ-
ously ([6] Theorem 8.1.1) that

(1.5) A(Z,0) — A0, g(t, x))

as 6 — 0, x, » x, and nf — t < co. Moreover, it can be shown that the distri-
bution over C[0, T] of the random polygonal line Z’ with vertices Z%(nf) = Z,’
converges weakly to the distribution of the diffusion Z satisfying the stochastic
differential equation

dZ(r) = w'(f(1)Z(r) dr + s(f(1))* dB(1)
and the initial condition Z(0) = 0 a.s., where B is Brownian motion. Weak
convergence theorems of this type have been established in similar contexts by
Rosén [9] and Kurtz [4].

These results are the background for the present study. We shall consider
the limit of #(Z,?) as § — 0 and nf — oo under certain additional assumptions.
Our main project is to prove the following theorem, which was announced in
([8] Theorem 3.2(ii)).

THEOREM 1. Suppose that I is bounded, w has a unique zero 2, and w'(2) < 0.
Then

(1.6) A(Z,%) — A0, g(0))
as § — 0 and nf — oo, where
9(0) = lim,_.. g(t, %) = (/2w (D) -

The limiting process in Theorem 1 places no constraint on x,. This implies
that (1.6) holds uniformly over x, in the following sense. Let d be a metric (or
pseudometric) on probability distributions over R, such that d(-=,, &) — 0
whenever &, — & weakly. Then

SUP,y 1, dL(Z,%), A0, 9(o0))) = O

as @ —» 0 and nf — co. Proceedingfurther in this direction, we may combine
(1.5) with Theorem 1 to obtain the rather striking conclusion that

(1.7) SUPy20,09e 25 D(M5 0, X5) — 0
as § — 0, where
D(n, 0, x;) = d(F(Z,%), A0, g(n8, x,))) -

For if (1.7) were not true, there would be a ¢ > 0 and sequences 6, n,, and
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x; € I, such that 6, — 0 as k — oo, but
(1.8) D(n,, 6,, x,) = ¢

for all k = 1. We could, moreover, choose these sequences in such a way that
n0,—t < oo and x, —» x. It follows from (1.5) and (1.6) that £(Z,%) —
410, g(t, x)) as k — oo, where 0 = 6,, n = n,, and g(oc0, x) = lim,_, g(¢, x).
Furthermore, it can be shown that g is continuous over [0, co] x I, so
A0, 9(n, 6, x,)) — A0, g(¢, x)). Therefore, by the triangle inequality,
D(n,, 6,, x;) — 0 as k — oo, contradicting (1.8).

Another corollary of Theorem 1 is obtained by permitting § to approach 0
after n — co. Suppose that £(X,’) converges weakly as n — oo, for every fixed
6. Let <£(0) be the corresponding limit of &£(Z,?), or, equivalently, of ~(z,7),
where

z," = (X, — 2)/6*
(f(t) > 2as t — oo0). It follows easily from (1.6) that
(1.9) “Z(0) = A0, g(c0))

as § — 0. Some special results of this type were established in [5]. It is also a
consequence of Theorem 1 that (1.9) holds for an arbitrary family ~7(8) of
stationary distributions of z,°. This implies Part B of Theorem 10.1.1 (i) of [6].

The proof of Theorem 1 is given in Sections 2 and 3. Section 4 presents an
application to the Wright-Fisher model for the evolution of gene frequency
under the influence of mutation, selection, and random drift. In that context,
6 = (2N)~t, where N is the population size, and the function f is, the classical
deterministic approximation to gene frequency for very large populations (see
[2] Section 2.3). The results (1.6) and (1.7), which relate to the distribution of
the error of this approximation, appear to be new even for this much studiea
model.

Section 5 gives a multidimensional analog of Theorem 1, and an illustrative
application to a mathematical learning model.

2. Conditional moments of AZ,’. A basic component of the proof of Theorem
1 is Lemma 1.

LeMMA 1. Under the hypotheses of Theorem 1, E((Z,°)?) is bounded over all
0el, x,el,, and n = 0.

This result follows immediately from Theorem 3.2 (i) of [8]. The latter theo-
rem assumes that J is an interval and I, = I for all ¢, but these assumptions are
not used in the proof. It emerges in the course of the proof that, for some
K< ooand a >0,

If(t, x) — 4] < Ke~
forall xe Tand ¢ > 0. Since w' and s satisfy Lipschitz conditions, we have

2.1) W(f(t, %)) — w(2)] = Ke=*
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and
(2.2) Is(f(2, x)) — s(2)| < Ke=*

for suitable new constants K.
Henceforth we suppress the ¢ superscript on Z,°, and let v, = f(n, x,). The
purpose of this section is to establish Lemma 2.

LemMA 2.
(2:3) E(AZ,|Z,) = 0w (»,)Z, + 0(0)
(2-4) E((AZ,)*| Z,) = 05(v,) + o(6)
(2-3) E(AZ,[|Z,) = 0(0),

where the quantities o(0) satisfy E(|o(6)|)/60 — 0 as & — O, uniformly over x,¢ I,
and n = 0.

Proor. Since w and w’ are bounded,
1@ = w(f(O)w(f()

Ay, = 0w(v,) + 0(6%)

is too. Thus

uniformly over x, and n. This expression and (1.1) imply that
(2.6) E(AZ,| Z,) = 0-(E(AX,| X,) — Av,)
= 0(w(X,) — w(,)) + 0(6%) .
Since w’ is Lipschitz, this yields
E(AZ,|Z,) = 0w ()Z, + 020(|1Z,]') + 0(6Y),

which, in view of Lemma 1, is of the form (2.3).
Turning to the proof of (2.4), we begin by writing

2.7 E(AZ,)’|Z,) = 0-'Var (AX, | X,) + EAZ,| Z,)*.
As a consequence of (2.6),
(2.8) E(AZ,|Z,) = 00(|Z,) + 0(6") ,
so that
E(AZ,|Z) < K@|Z, + 6)
and
(2’9) E(AZ;‘ | Zn)a = 0(0)

by Lemma 1. Next, (1.2) yields
6~ Var (AX, | X,) = 0s(X,) + o(0)
(2.10) = 0s(v,) + 010(|Z,)) + 0(0) .
= 0s(v,) + 0(6)
by Lemma 1. Substituting (2.9) and (2.10) into (2.7), we obtain (2.4).
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Finally,
E(AZ,['| Z,) = 407 HE(AX]| X,) + vaf)
< K¢?
as a consequence of (1.3) and the boundedness of w. This implies (2.5).

3. A general central limit theorem. In view of (2.1), (2.2), Lemma 1, and
Lemma 2, Theorem 1 is a corollary of Theorem 2.

THEOREM 2. Suppose that Z,°, n = 0, 6 € J, is a family of real-valued stochastic
processes such that

3.1) E(AZ,| Z,°) = Ga(n, 6)Z,° + o(0)
3.2) E(AZ,%)| Z,%) = 0b(n, ) + 0(0)
(3-3) E(AZ,!| Z2,°) = 0(0),
where

Sup,zo £(|0(0)])/6 — 0
as § — 0,
3.4) a(n,0) —> a and b(n, 0) — b

as § — 0 and nf — co, and a < 0. Suppose also that

3.5 SUP,z0.0es E(Z,7)) < oo .
Then £(Z,°) — 470, ¢*) as § — 0 and nf — oo, where ¢* = b[2|a|.

Proor. Let
h(r) = h'(1r) = E(exp(irZ,)) -
Then
(3.6) h.11(r) = E(exp(irZ,))E(exp(iy AZ, | Z,)) .

Expanding exp(iy AZ,) up to terms of third order in y and using (3.1)—(3.3)
we obtain

(3.7) Ah,(7) = Ora(n, O)h,'(r) — 627'1*b(n, O)h,(r) + du(7) »
where
(3.8) |d.(r)| = Oe4l7|

and ¢, is our generic notation for a quantity that depends only on # and ap-
proaches 0 as ¢ approaches 0. This estimate is valid for all » > 0 as long as
is bounded, |y| < I'. From (3.7) it follows that

(3.9) Ahy(r) = Orah,'(r) — 0277°bh,(7) + du(r) + €a(7)
where, in view of (3.4) and (3.5),
(3.10) len(r)| = Oc(n, O)]7] »

and ¢(n, 0) is a quantity that approaches 0 as § — 0 and nf — co. The inequality
(3.10) presupposes [7| < T'.
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Let
v(r) = exp(2~'y%?),
H,(r) = v(7)h(7) »
D,(r) = v(r)d.(7) »
E,(r) = v(r)eu(7) »

v(rh'(r) = H,'(r) — o'rH,(7) -
Thus multiplication of (3.9) by v(y) yields

and note that

(.11) AH,(r) = 0raH,'(r) + Du(r) + Eu(1) -
As a consequence of (3.8) and (3.10),
(3.12) 1Du(1)] = Oelr]
and
(3.13) |E(7)] < Oc(n, 0)]7]
for |7 < T.
Let

ri = (1 4+ da)’¢,
where ¢ is fixed for the remainder of the proof. Assuming 6 < 1/|a|,
(3.14) Ir;l < el -
In particular, 7; is bounded by || = T for all j and 6.
For any 0 < m < M, define 57, = 52,(M, 6) by
o = Hu(Vs-m) -
Then 575 = H,(€). Suppose that 52, — 5%, — 0as§ — 0and k6 — oo, while
S#, — 1 as (M — k) — co. Then choosing k = [M]2] we see that H,(§) — 1,
hy(€) — exp(—276%%)

and F£(Z,) — A0, ¢ as 6 — 0 and M — o, as the theorem asserts. Thus
it remains only to show that 57, — &%, — 0 and 52, — 1.

It may assist the reader in understanding the proof that 523 — 527, — 0 to
regard (3.11) as an approximation to the partial differential equation

0H(t,y) _ __0H(t, 1)
—2 U = yra >~
ot ar

For any constant g, (1, ge~*) is a characteristic base curve of this equation ([1]

page 63), so
d
— H(t,ge ) = 0.
a 1 9e7)

Since 7,_,, approximates r,e*"’, we expect %, = H,(ry-n) t0 approximate
H(m0, rye ™). Thus &£, should vary little with m.
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Clearly
AS#, .= A, — B,
for m = 1, where

Am = m(rM—m) - Hm—l(rll—m)
and
Bm = Hm—l(rM+1—m) - Hm—l(rﬂ—m) .
Thus
(3.15) |G — ZZ%| = Lt |An — Byl -
Now
(3°16) B, =01y H \(7Ts-m) + Fus
= 0arM-m H;n—l(rll—m) + Fm—l ’
where
(3.17) |Fesl = 27HA7 el MAX gy [ _o(7)]

< Ke‘zeﬂa&(ﬂl—m)

by virtue of (3.14) and (3.5). When the expression (3.16) for B, is subtracted
from (3.11) for A4,,, the leading terms cancel, so that
Am - Bm = Dm—l(rﬂ—m) + Em—l(rM—m) - Fm—l .
Applying the estimates (3.12), (3.13), (3.14), and (3.17) to (3.15), we obtain
|SF — S| < (g9 + SUP,z; c(n, 0))0 TE_, ., €*0¥—™
< (e + SUP,z (> 0))0/(1 — €*).

Since ¢, — 0 as 8 — 0, and ¢(n, ) — 0 as § — 0 and n6 — oo, it follows that
Sy — H# —0as @ —0and kf — oo.
Note, finally, that
[P (7 ar-2) — < lTM—kIE(IZkI)
=< K|l

by (3.5). Since 7y_, — 0 as (M — k) — oo, we have hy(ry_,) — 1 and thus
5 = h(ru-e)V(ru—s) — 1
as (M — k) — oo. This completes the proof.

4. The Wright-Fisher model. Suppose that there are two alleles, 4, and 4,,
at a certain chromosomal locus in a diploid population of N individuals. Let i
be the number and x = i/2N the proportion of 4, genes in the population at any
time. According to the model (see [2] Section 4.8), values X, of x in successive
generations form a finite Markov chain with transition probabilities

Pi; = ()mi(l — m)pv=i,

r,= (1 — wr* + v(1 — 7;%)

where

and
* _ (I + s)x* 4+ (1 + s)x(1 — x) )
(1 4+ s)x® 4+ 2(1 + s)x(1 — x) + (1 — x)?

T,
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The constants s,, s,, ¥, and v control selection pressure and mutation rate. The
fitnesses of the genotypes 4, 4, and A4, 4,, relative to that of 4,4,, are 1 + s,
and 1 + s, respectively. The probability that an 4, gene mutates to A4, is u,
while the probability that 4, mutates to A4, is v.

To apply Theorem 1 to this model, we assume that these parameters are pro-
portional to 0 = (2N)* s, = 5,0, u = 49, and v = 0, where @, ¥ > 0. The
routine verification of the assumptions in the second paragraph of Section 1 is
given in ([6] Section 18.1), where it is also shown that s(x) = x(1 — x) and
4.1) w(x) =0 — (@ + V)x + x(1 — x)(5 + (5, — 28)x)
on I =[0,1]. Thus Theorem 1 applies whenever w has a unique root 2 and
w'(2) < 0 (i.e., 2 is stable).

The following conditions are sufficient but by no means necessary for this:
@>0,0>0,and § < 25,. (Proof. Sincew(0) =% > O0andw(l) = —a <0, w
has at least one zero in (0, 1). If § = 25,, w is quadratic or linear, and unique-
ness and stability certainly obtain. If § < 23, the coefficient of x* is positive,
so w has a root above 1 and a root below 0. Thus w has only one root 2 in
(0, 1) and it must satisfy w'(2) < 0.) The inequality 5 < 25, admits a number
of genetically significant special cases:

(i) no dominance, §, = 25;
(ii) favored gene completely dominant, 5, = § > 0 or 5, < § = 0; and

(iii) heterozygote advantage, 5 < 5, > 0.

Writing X,” and x¥ for X,’ and x,, the conclusion of Theorem 1 can be ex-
pressed as follows:

@NPX,Y — f(n](2N)}, x™)] ~ A0, g(c0))

as N— co and n/N* — co. The occurrence of the fourth root on the left is
noteworthy. (We observe that the related results in lines 13 and 22 on page 259
of [6] should have fourth roots instead of square roots.)

To see the relation of Theorem 1 to other diffusion approximations of the
Wright-Fisher model, suppose that the mutation and selection parameters are
proportional to a parameter ¢ > 0, i.e., s; = §¢, u = ite, and v = ¥e. Theorem
1 pertains directly to ¢ = (2N)~%, but it turns out that this result is typical of
those obtained when ¢ — O sufficiently slowly that Ne — co. If the function w
given in (4.1) satisfies the hypotheses of Theorem 1, then (eN)iX,, suitably cen-
tered, is asymptotically normally distributed as ¢ — 0, Ne — oo, and ne — oo.
This generalization of Theorem 1 will be proved in a subsequent paper. For a
clear heuristic analysis of the asymptotic behavior of X, when ¢ — 0 and Ne —
o0, see Section 9 of [3].

Suppose now that ¢ = (2N)~*. In this case, ZL(X,") — 1, x) as x¥ — x,
N — oo, and ne — t < oo, where (1, x) is a nondegenerate distribution associ-
ated with a diffusion on 7 ([6] page 260). The standard diffusion approximations
of population genetics are of this type ([2] Section 5.1). This result, like the
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analogous result (1.5), is valid whether or not the function w in (4.1) satisfies
the hypotheses of Theorem 1. One would like to know what auxiliary conditions,
if any, must be imposed to insure that £°(X,¥) converges to lim,_, F(t, x) as
x¥ — x, N— oo, and ne — oo.

5. Multidimensional case. Suppose that the assumptions of the first two
paragraphs of Section 1 are in force, except that X,? is k dimensional, and the
conditional variance in (1.2) is replaced by the conditional covariance matrix.
Then (1.5) is valid, where the asymptotic covariance matrix g(f) = g(¢, x) satisfies

g'(1) = w(f()9(®) + 9w (f(1)* + s(f(1) »
and * indicates transposition ([6] Theorem 8.1.1). Theorem 3 is the multi-
dimensional analog of Theorem 1.

THEOREM 3. Suppose that the following additional conditions obtain: I is bounded,
there is a point A such that w(2) = O, and there is an inner product [x, y] on R* such
that

(5.1) [x —2,wx)] <0
forall xel, x + 2, and
[z, w(2)z] < O
forall ze R*, z = 0. Then
(2,7 — A0, 9(e0))
as § — 0 and nf — oo, where g(co) is the unique solution of the system
w(2)g(c0) + g(co)w'()* + s(2) = 0
of linear equations.

Obviously (5.1) implies that 2 is the only zero of w. The most general inner
product on R* is [x, y] = (x, Py), where (x, y) is the Euclidean inner product
and P is a positive definite matrix.

Theorem 3 can be established by a straightforward generalization of the proof
of Theorem 1. This involves establishing the multidimensional generalizations
of Lemmas 1 and 2 and Theorem 2. We omit details.

Theorem 3 is applicable to the Zeaman-House-Lovejoy learning model [7],
which describes how a human or lower animal might learn to attend to a certain
“relevant” dimension of a multidimensional stimulus. In this rather complex
model, X, is two dimensional and 7 is the closed unit square. There are six
learning rate parameters, ¢;, ¢, @3 ¢, 05, 6,, and two payoff probability
parameters, 7 and 7. To apply Theorem 3, we assume that the learning rate
parameters are all proportional to a single parameter 4, i.e., ¢; = 6¢; and §; =
08;, where ¢, and d; are positive constants. It can be shown that the hypotheses
of Theorem 3 are satisfied if and only if one of the following conditions holds:
(i) 7y <1 and =, <1, or (i) max (zz 7y) = 1, min (7 75) <1, and
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@1 > @i(ms + my)[2. In either case we can take [x, x'] = x,x,” + cx,x,’ for ¢
sufficiently large. Under condition (i), 4 is in the interior of I, while under
condition (ii), it is one of the corners.
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