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Sociobiological Variations
on a Mendelian Theme

M. FRANK NORMAN

1. Introduction. My articles in this volume illustrate two aspects of my work as
a psychologically oriented mathematician. The present article shows elementary
mathematics in the service of psychology. The other article [1] shows elementary
psychology in the service of mathematics. Both papers bear on simple genetic
models: deterministic models in this paper and stochastic models in the other
one. : :

In psychology one frequently encounters facile evolutionary explanations of
contemporary behaviors and their neural substrates. It is often easy to convince
oneself that a certain characteristic of a currently predominant genotype per-
mitted individuals of that genotype to have more offspring than conspecifics,
thus ensuring the success of the genotype. The (modest) interest in such exercises
is partially predicated on the validity of the transition between individual
reproductive success (“fitness™) and long-term success of the genotype. This
paper shows that such transitions are not always valid. -

2. Fitness and survival. According to E. O. Wilson, “Hamilton’s theorem on
altruism consists merely of a more general restatement of the basic axiom that
genotypes increase in frequency if their relative fitness is greater” [2, pp. 415-416,
italics added]. W. D. Hamilton’s theory of the evolution of altruism will be
considered in §4. The present section relates to the italicized proposition, which
is an unusually explicit statement of a dominant theme of the hterature of
Evolutionary Biology.

Consider the following example. Suppose that there are three interbreeding
varieties of zebras in a certain region. Call these varieties a, b, and ¢. They differ
in probability of survival from conception to reproductive age, perhaps because

of different diets. The common term for this survival probability is viability. .

_Assuming that all varieties are equally fertile, viability is proportional to, and
“can. thus be identified with, the expected number of offspnng of a newly
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conceived zebra. This number is termed fitness, and denoted w,, w;, w, for the
three varieties. Suppose, for definiteness, that w, =1/5 w, = 3/5 w, =4/5,
Obviously, the relative frequency of ¢ will increase from generation to genera-
tion, in accordance with Wilson’s proposition, and this variety will eventually.
msplace the other two, in accordance with the notion of “survival of the fittest.”

* This is “obvious,” but it need not be true. As in most casual evolutionary
arguments, I have said nothing about the genetic structure of my zebras. This is
tantamount to assuming that genectic structure is irrelevant to the course of
evolution. This is a dangerous assumption, to say the least.

Suppose, for example, that the differences between a, b, and ¢ are controlled
by one genetic locus with two alleles, 4, and 4, and that the genotypes of g, b,
and ¢ are @ = A4, b= A4, ¢ = A;A,. The fitnesses w,, w,, and w, will
henceforth be denoted wy,, wy;, and wy,. Make all of the standard simplifying
assumptions: random matmg, infinite population, and nonoverlapping genera-
tions. Let

p,', = proportion of 4, genes among newly conceived individ-
uals in the nth generation

and g, = 1 — p,. Then the proportions of 4,4,, A,Az, and 4.4, are p2, 2p,q,, ¢°

at conception (this is the Hardy-Weinberg law [3, p. 4]) and proportional to
Wy, P2, 2Wy2P, 4, W22q2 among adults, from which it follows that
winP; + WiaD,4,

Py = . 2.1
" wypE + 2wypag, + wpg? @

Since the heterozygote, A;4, = ¢, has greater fitness than either homozygote, p,
converges to an internal equilibrium value,

Wiz = Wy

P =

W

,=
2wy, — Wy — Wy

The asymptotic genotype proportions, denved from the Hardy-Wemberg law,

- are ngen in Table 1.

Tasel
Fitness and d.syn'pto_t_ic Jrequency
Variety Genotype Fitness. Frequency
S oa A,A, - 1/5 1/16
b - A4y 3/5 9/16
c : A lAz ) V 4/ 5 6 / 16

Clearly “survival of the fittest” does not apply here, if this phrase is under-
stood to imply that the fittest variety displaces all competitors. In our example,
all three varieties remain in appreciable frequencxes. Moreover, the second fittest
variety, b, is asymptotxcally more numerous than the fittest variety, ¢, Nor is it
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correct that the fittest variety always increases in frequency, as ‘Wilson alleges.
For it can be shown that, if p, <p,, then p, increases to P = 3/4 Hence
P(c) = 2p,q, decreases for all n sufficiently large that p, >3. :

It is sometimes claimed that the theory of evolution by natural selection is
vacuous, since its mechanism is “survival of the fittest” and fitness is often
defined as survival probability. This conundrum arises from an ambiguity in the
word “survival”: it is used to refer to both individuals and varieties.” Our
example shows that superior “individual survival probability (fitness) does not
guarantee supenor asymptotxc frequency of the corresponding variety. (For a
fuller discussion of the claim that natural selection i is tautologxcal together mth
a different resolution, see [4, Chapter 40y

The notion that one may equate mdmdual and variety survival is deeply
ingrained in biology. This notion can lead to eérror because it ignores the
subtleties of Mendelian genetics. Its’ persxstence is perhaps partly explicable by
the long delay between publication of The Origin of Species and the rediscovery
and acceptance of Mendel’s ideas: Moréover, the linkage between fitness and
asymptotic prevalence is often as direct as anyone could wish. If

min{w;, Wy} < Wy, < max{wy;, wp},

then the fittest genotype (either 4,4, or 4,4,) displaces all others at asymptote.
However, if min{wy;, Wy} < wj, = max{w, wy}, then the simple fitness-prev-
alence linkage again fails, since 4,4, is completely displaced by a homozygote
with the same fitness. '

Our findings in this section apply with equal force to the evolution of gross
anatomical structures and to the evolution of neural microstructures that in-
fluence behavior. Subsequent sections have a specifically behavioral focus.
Variants of the example presented in this section will be used to expose
weaknesses in two popular theories of the evolution of social behavior: Maynard
Smith’s theory of the evolution of behavior in conflicts between animals, and
Hamilton’s theory of the evolution of altruism. '

3. Evolutnonanly stable strategies. The central notion in Maynard Smxth’
theory [5] is the evolutionarily stable strategy or ESS. Roughly speakmg, an ESS
is a frequency distribution over alternative genetically controlled behavior
patterns that is resistant to incursion by small mutan_t or migrant groups. Stated
in this way, it is possible to apply the notion directly to our three types of zebras
with different dietary preferences and corresponding fitnesses w, = 1/5, w,, =
3/5, w, = 4/5. From a naturalistic, genetically naive, viewpoint, it would appear
that the ESS for zebras is for them all to be of type ¢. For w, >w, and w, > w,,
so mutants or migrants of types a and b would be at.a d1sadvantage in a
population of individuals of type ¢ (so the argument goes) However, the “all ¢”
strategy is not, in fact, stable in the ordinary, dynamic, sense, if, as before, type ¢
zebras are A,4, heterozygotes. For if all zebras were of type ¢ in the nth
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generation, then, in the next generation, types a, b, and ¢ would have frequen-
cies 1/4, 1/4, and 1/2. Another way of putting it is that the “all ¢” strategy is
not available to the population under natural conditions. It ignores the con-
straints of Mendelian segregation. Oster and Rocklin [6, p. 31] have also noted:
the genetic naiveté of Maynard Smith’s theory.

It may reasonably be objected that the preceding paragraph slights ESS by
generalizing it beyond the game-theoretic context in which it was formulated.
This context will now be described. Suppose that a population consists of &
behaviorally distinct varieties of a certain species, which we label 1,2,..., k.
The distinctive behaviors are displayed in certain interactions (e.g., temtonal
conflicts) with other mémbers of the populatlon We suppose, for simplicity, that
an individual has exactly one such interaction in his lifetime, and that this
interaction determines his fitness. The fitness of an i that interacts with a j is
W(i, /). Consequently, the expected fitness of an i that interacts with a randomly
chosen opponent is W(i, Q) = Ej‘_, W(i, )Q), where Q, is the probability that
the other animal is a j. Finally, if both contestants are randomly chosen, the
expected fitness of the first is

Kk k
WP, Q)= 2 X PWAQ:
j=1jm
Here one should think of choosing the two contestants independently from
subpopulations with respective distributions P and Q.
The definition of an ESS is formulated in terms of the expected fitness
function. Forany P, Q,and e > 0,1et P, = (1 — &)P + €Q.
DEFINITION A distribution, P, is an ESS if, for every Q # P,

W(P, P,) > W(Q, P.),

for all sufficiently small e.

Here Q corresponds to a mutant or migrant subpopulation attempting,
unsuccessfully, to “gain a foothold” against an established populatlon with
distribution P. This formulation of the definition of ESS follows [7].

Maynard Smith proposes that distributions occurring in nature should be
evolutionarily stable in this sense. This is an appealing notion, but it may be
inconsistent with certain models for the genetic substrate, as we can see by
reconsidering our zebras. Thus k = 3, and varieties 1, 2, and 3 correspond to our
earlier @ = A,4,, b = A,4,, and ¢ = A, 4,. Moreover, we assume that the
fitnesses given earlier apply here, regardless of the other animal’s behavior. In
other words, W(1, /) = 1/5, W(2,j) = 3/5, W(3,)) = 4/5, forj = 1,2, 3. Thus
we have simply embedded our earlier example in the present game-theoretic
framework. As was notcd previously, the distribution that evolves is

=1/16, P,=9/16, P,=6/16.

This distribution is not an ESS. It is easy to show that the only ESS is our old
friend, the distribution concentrated on the heterozygous variety, 3.
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The assumption that fitness is independent of the other animal’s behavior
makes this a degenerate example of an “interaction,” much less a “conflict.”
However, 1 see nothing to prevent such inconsistencies between ESS and
genetics from arising in bona fide conflict situations. The gap between ESS and
genetics is clearly revealed by the fact that the rationale for ESS, such as it is,
applies with equal force to interspecific and intraspecific confhct, wh11e only the
latter situation imposes genetic constraints.

Our example shows that the ESS notion is incompatible with one possible
specification of genetic substrate. Perhaps it is more interesting to ask whether
there is any genetic substrate with which ESS is consistent. I was surprised to
discover, quite recently, that the answer is “yes.” The anomalies of the zebra
example are traceable to the superior fitness of heterozygotes. This led me to
consider a scheme that assigns intermediate fitness to heterozygotes.

Suppose that there are only two behavioral phenotypes, 1 and 2 (e.g., the
“hawks” and “doves” discussed u% [5D. Underlying these- are three genotypes,
AA,, A;A,;, and A 4,. All 4,4, homozygotes, and a proportion, y, of the
heterozygotes are assumed to have phenotype__l;‘ the remaining heterozygotes
and the 4,4, homozygotes have phenotype 2. As in §2, let p, be the proportion
of A, genes in the nth generation, and let P, be the corresponding distribution
over the two phenotypes. Then P,, = P2 + 2w,,q,,. Genotypes 4,4,, A,A,, and
A,;A, have respective fitnesses W(2, pP), W(Q,P,), and yW(l, P,) +
(1 = Y)W, P,), and the trajectory of the system is determmed by (2.1) with
Wy, Wyp» and wy, replaced by these values.

-For this model, evolutionary stabxhty and dynamxc stabxhty are synonymous
This can be seen from the followmg catalog of cases correspondmg to different
values of the parameters _

=w(,1)— W(2,1) and &= W(2,2)— W, 2).'
Proofs are omxtted It is assumed that 0 < P” < 1, and P, denotes the hmxt of
P,asn— co. :

(a)6,=0and62=0ThentherelsnoESS and P, =p1 o <

(b.1) 8, > 0, 8, < 0, and at least one of these mequalmes is strict. Then thc
only ESSis P, = (1, 0).

(b.2) 8, < 0, 6, > 0, and at least one of these mequa.lmes is strict. Then the
only ESSis P, = (0, 1).

(©) 8, < 0 and 8, < 0. Then the only ESS is P, =(a,l—a), wherea=“

8,/(8, + &)
(d) 8, > 0 and 8, > 0. Then both (1, 0) and (0, l) are ESSs. Moreover
(1,0) ifP; >a,
Pyo={(a,1—a) ifP,=a,
o1 if Py <a.

This model can be generalized in an obvious way to more than two behaviorai
phenotypes. It remains to be seen whether the identity between evolutionary and
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dynamic stability holds for the generalization. Moreover, there is no reason to
believe that such models accurately represent the gencnc contribution to
animals’ behavior in conflict situations.

In this section we have seen that it is possible to find a genetic model'
compatible with Maynard Smith’s theory, as well as a model that is not
compatible. This léaves one uneasy about most of the literature on ESS, since
this literature characteristically avoids explicit consideration of genetic substrate.
Two exceptions are [7] and [8), which, however, concentrate on behaviorally

i uninteresting haploid organisms.

4. The evolution of altruism. Altruistic behavior involves personal sacrifice for
the benefit of others. In the present context, we must think of loss of personal
fitness in the process of increasing the fitness of others. If genes that promote
altruism are shared by the beneficiaries of the altruism, these genes may increase
in frequency. This mechanism could favor evolutlon of sacnficc for the benefit
of relatives.

As one would expect, the necessity of considering both donors and recipients
imposes a certain inherent complexity on models for the evolution of altruism.
However, for the important case of parental altruism, it is possible to formulate
a relatively simple model. 7

Bidding goodby to our zebras, let us consider an avian species where both
parents make equally important contributions to nestlings’ survival. Their activi-
ties in this regard (incubating eggs, feeding chicks, guarding the nest, etc.)
endanger their personal survival and are thus altruistic. Suppose, for simplicity,
that the entire complex of parental behavior is controlled by one locus with two
alleles, 4, and 4, (our usual assumption). We now. assume, however, that there
are two parameters, u; and vy, associated with the genotype 4,4,. The parameter
uy, called viability, is the probability that an 4,4, survives to reproductive age,
given that he survives until he leaves the nest. - The other parameter, vy, called
nurturance, is a méasure of the quality of parental care provided by 4,4,.
Specifically, v, is the probability that an offspring of 4,4, and 4,4, parents

. survives until he leaves the nest. The v parameters in models of this kind are

usually described as fertilities [9], but it is understood that what I call nurturance
is an important component of genetic fertility parameters [10, p. 51]. For my
present illustrative purposes, I am essentially assuming that nurturance is the
only component of fertility.

Let p, be A, gene frequency among birds leaving the nest in the nth
generation. It is not difficult to show that this quantity satisfies (2.1), if we take

Wy = uyv, = viability X nurturance, (4.1)

In this model, an altruistic individual is one with high nurturance and low
viability, while a selfish individual has low nurturance and high viability. It is
not too surprising that the course of evolution is controlled by the product of
viability and nurturance, which I will call composite fitness.
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To facilitate comparison with Hamilton’s theory, let me rewrite (2.1) in the
form

Ap, = p,(w. —w.)/w., (42)

- where Ap, = Ppyy = Par Wi = WPy + Wag,, and w. = wy,p2 +2wy,p.q, +

292, The theory in Hamilton’s basic paper [11] covers relatives of all kinds,
though he says that it is especially appropriate for interactions between relatives
of the same generation. Using an argument involving “certain lapses from
mathematical rigour” [11, p. 2], Hamilton obtains the equation

Ap, = p.(R,. —R.)/ (R. +8S.). (4.3)

(This is Hamilton’s equation (2) [11, p. 6], with i =1 and dot superscripts
omitted.) '
Hamilton draws attention to. the similarity between (4.3) and its classical
analog, (4.2). Apart from the term 6S., which we may ignore, the only difference
between (4.2) and (4.3) is that, in place of composite fitness, wy, Hamilton has
inclusive fitness, Ry. This quantity is the sum of an individual’s personal fitness,
taking account of his altruistic or selfish acts, and the changes in relatives’
fitnesses due to these acts. The latter changes are weighted by the appropriate
coefficient of relationship, », which is the expected proportion of genes of the
donor and recipient that are identical by descent (that is, copies of the same
gene in some recent ancestor). For parent and offspring, this coefficient is %, so

where x; and y, are, respectively, the parent’s and offsprings’ changes in
personal fitness due to the parent’s altruistic or selfish behavior. In the absence
of such behavior, we are assuming, for simplicity, that all gendtyj:es have the
same fitness, which we have taken to be 1 without loss of generahty

We now come to the main point of this sectlon. Aceordmg to Hamﬂton,
“With classical selection a genotype may be regarded as posmvely selected if its
fitness is above the average and as counter-selected if it is below » In the case of
altruistic and selfish behavior, “the kind of selection’ may be considered
determined by whether the inclusive fitness of a genotype is above or below
average” [11, p. 14]. For easy reference below, I will call this Hamilton'’s
criterion. We saw in §2 that it is incorrect in the classxcal case. Superior w;, does
not ensure that 4,4, increases in frequency if i = j. The analogy between “4.2)
and (4.3) leaves no doubt that Hamilton’s criterion is also inconsistent with
Hamilton’s basic theory as expressed by (4.3). Perhaps this is what Hamilton
had in mind when, in a later paper [12, p. 196], he described this criterion as

‘“approximate.” '

- Given the conflict between Hamilton’s criterion and his basic theory, it is of
considerable interest that his most frequently cited result is derived from the
criterion. I am referring to the rule relating &k to 1/r [11, p. 16], where k is the
ratio of recipients’ and donor’s changes in fitness, k = Yy/ X%y -In cases of
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selfishness and altruism, x; and y; have different signs, so k¥ < 0. For parent-
offspring interaction, (4.4) yields

R,=1+(l +,k/_2)x,,. ' (45)
For other relationships, the comparable equation is
Ry=1+ (1 + rk)x,.

Thus, according to Hamilton’s criterion, natural selection should tend to favor
an’ altruistic genotype (x; < 0) if |k| > 1/7. Similarly, a selfish genotype (x, >
0) should be favored if the reverse inequality holds.

- These calculations with inclusive fitness, R, can be imitated with composite
fitness, w. Recall that s, and v,v,,, are in units of offspring survival probability;
hence o,}, not vy, is comparable to ;. This suggests rewriting (4.1) in the form
w = u(v?)?or \
log w =logu +1 log v " (4.6)

(Here and below we omit subscripts.) Only ratios of us, vs, and ws are relevant
to (4.2); hence these parameters can be rescaled so that a neutral condition (no
selfishness of altruism) corresponds to ¥ = 1, v = 1, and thus w = 1. Then the
neutral values of the logarithms.in (4.6) are 0, and these quantities are fully
-comparable to R — 1, x, and y in (4.4). Taking
k = log v*/log u, 4.7

we obtain

logw = (1 + k/2)log u, (4.8)
the analog of (4.5). Altruistic (u < 1, v > 1) or selfish (¥ > 1, v < 1) genotypes
satisfy Hamilton’s criterion for positive selection (large w) depending on whether
|k|] > 2 or |k| < 2, just as in the inclusive fitness formulation.

To see that this rule need not correctly predict the course of evolution, we
return once again to the example described in Table 1 and assume that 4,4, is
neither altruistic nor selfish. Rescaling to achieve w;, = 1, we obtain w,, = 1/3
and wy, = 4/3. As a consequence of (4.7) and (4.8), u = w¥**? and v =
wk/&+3), For k = —4, these formulas yield the values given in Table 2. Accord-
ing to

 TABLE 2
Viability, nurturance, and asymptotic frequency for k = -4
Genotype u . v w Frequency
A;A, (selfish) 3 1/9 1/3 1/16
A,A, (neutral) 1 1 . 1 9/16
A, A, (altruistic) 3/4 16/9 4/3 6/16

Hamilton’s rule, 4,4, altruists should prosper, since |k| >2, but, in fact,
selection favors the neutral genotype, 4,4,. Table 3 has been obtained by
reversing entries in the » and o columns of Table 2. This transformation
preserves w but changes k to k' = 4/k = -1.
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TABLE 3
Viability, nurturance, and asymptotic frequency for k = -1
Genotype u v v w Frequency
A3A, (altruistic) 1/9 3 1/3 - 1/16 .
A,A, (neutral) 1 1 1 9/16
A A4, (selfish) 16/9 3/4 4/3 6/16

Since |k] < 2, the selfish genotype should be favored, but, again, it is asymp-
totically less prevalent than the neutral genotype. For further consideration of
*“lk] > 1/r,” in the context of other models, see [13] and [14].

5. Genes and genotypes. Fitnesses of genes can be defined by averaging over
genotypes in which they occur. In the classical case, the fitnesses of 4, and 4,
are

W = wyp, + wppg, and w, =wpp, + wyg,.

Although (4.2) and (4.3) do not imply positive selection of genotypes with above
average fitness, they do imply positive selection of genes with above average
fitness. Thus discussions of evolution in terms of genes rather than genotypes
avoid the pitfall which this paper has been concerned.

Many discussions of evolution (e.g., parts of [15]) are, in fact, cast in terms of
genes. A limitation of this approach is that the fitness of a gene is not as
intuitive as the fitness of a genotype. It is frequency dependent, and, if the
heterozygote is most (or least) fit, even the ordering of w,. and w,, is different for
large and small p,. Discussions that ignore this frequency dependence implicitly
(and perhaps unconsciously) rule out heterozygote superiority, which is the basis
for the example considered repeatedly in this paper.
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