" Psychometric Soclety October, 1964

ESTIMATING THE DISTRIBUTION OF ADDITIVE

REACTION-TIME COMPONENTS®

by
Saul Sternberg

‘Bell Telephone Laboratoriles, Incorporated
Murray Hill, New Jersey

One of the oldest ideas 1n experimental psychology
1s that the time between stimulus and response 1s occupled by
a series of stages, with one stage being initiated upon the
completion of the preceding one. At the very least, stages
for perception, declsilon, and response have been proposed.

This serial theory has led to numerous models that represent

the reaction timé as a sum of random variables.“It has usually
beeh/qssumed that the component random varliables are independent.
Moréoﬁer, most of theée models éo further, and specify some
particular form for the component distributions.

One of the objects of the work I shall report on
today 1s to test the independence of reaction-time components
without having to assume any particular form for their dis-
tributions. Support for the independence assumption would
also be evidence favoring a more general theory of serlal proc-

essing. My second object 1is to estimate the unknown distribu-

tions bf the components.
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The problem of decomposing ai. abscrved reaction-
£ime distribution into a sum of 1ndependemt compovernts has
been discussed before, notably in 1956 by Christie ard Luce2
énd,’more recently, by McGill.3 But in botl: cases tie proposed
methods require the form of gf least one or the ¢omponent
distributions to be specifiled. |

Christie and Luce did, however, defire a class of
experimental situations to which the testing and estimation
methods I shall describe are appllcable. In such situations

the reaction time includes a series of 1dentically distributed

components whose number 1s under experimental cortrol, Thus,
in my experiments, the subject first memorizes a small set

of digits. On each trilal a test diglt 1s presented. If the
test diglt is one of those in memory the subject pulls one
lever, making a positive or "yes" response. If tne test digilt
is not one of those in memory the subject makes a negative
response by pulling the other lever, The time from the onset
of" the test diéit to the response 1s measured. Results of a
number of experiments suggest that in deciding whether or

not a test diglt 1s contained in memory, the subject searches
exhaustively in the memorized set at a rate of atout 30 symbols
per second. That 1s, he matches or compares trne test digilt
successively with each of the memorized digits, with a mean

~comparlson time of about 3% milliseconds. The 3lze of the
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| memorized set, and therefore the number of successive compa. -
1sons, 1s controlled by the experimenter. |

Some of the experiments giving support to this thesry
were deseribed at last year's meeting of the Psychonomic
sSoclety,

The model that I shall consider is represenﬁed by

raquastion 1,

b = base time .
RT{S) = Tb + 11 + T2 + ...+ Ts’ where {Ei (1 =1,...,s) (1)

= comparison tiae.

If s eiements are in memory, then the reaction-time is given
by-the sum of s "compzsrison" times, denoted by Ti’ and a "base"
time, dencted by Tb' The base time 1s a wastebasket-category,
and presumably represents perceptlion and response times, as
well as some of the decision time. In general, posltive angd
negative responses have different base times. In a typical
experiment, three conditions are studled, in which the values
of s are one, two and four. For both poslitive and negative

responses, one observes distributlions of the three sums given

in (2).

T + Tl’ Tb + T1 + T

b Ty + Ty + Ty + Tg + Ty (2)

2)

I shall describe a procedure for testing, Jointly,
two assumptions about the component random variables. The

first 1s that they are independent. The second is that the
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comparison times; Ty, are identically distributed. Conse-
quences of-these assumptions are best descrilbed 1n terms of
the cumulants, X, of the reaction~-time distribution. You
will probably recall that when the cumulants exlst, they are
generated by the natdral logarithm of the moment generating

function, as shown in Equatlon 3.

92 3
2
= log (1+ ale+ a &+ >=1o MGF (3)
€e 1 2 21 0 €e *

In (4) the first four cumulants are given in terms of the first

4
four moments. ay is the first raw moment; a, is the rth

central moment.
K, = Qs Ko = G K, = Q -x = q) - 3a2 (4)
1 1’ 72 2’ 3 3’ 4 4 e’

The symbols to be used are defined as follows:

Cumulants Moments

Reaction-time distribution K
Base~time distribution B
Comparlison-time distribution ¥
Contaminated RT distributilon C

v
r

Hp

e B T

3

Im general, the fth cumulant can be expressed 1n terms of

moment,s of order r and lower. Because MGF's of 1ndependent



random varilables multiply, KGF's add. For all r, therefore,
the rth cumulant of a sum of independent random variables is
the sum of the rth cumulants of the individual variables.

Equation 5 follows from this additivity property.

KP(S) = 7.8 + B, (r =1,2,...). (5)

Tf the model 1s correct, then for all r, the rth cumulant 1s

a llnear functlon of s. The slope of thils function is the rth

cumulant of the comparlson-time distribution; 1ts 1Intercept

is the corresponding cumulant of the base-time distribution.
Before consldering applications of Equation 5, let

us turn briefly to the problem of contamination of the reaction-

tlme distribution. There are not many students of reaction

time who feel that their experimental technique is sufficlently

clean so that they can completely eliminate uninteresting con-

.tamination from thelr data. No matter what precautlons are

taken, response movements are occasionally abortive, or the

subject may blink Just when the stimulus 1s presented. If

the amount of contamination depends on the value of 8, then

we are in serious difficulty. A plausible model for contami-

nation that 1s not dependent on s 1s given below.

T, + Ty + ... + Tgs with prob 1l-e,

_ b 1
RT(s) ‘{Tb+Tl+ cee + T+ X, with prob e.
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With & small probabllity, e, a random varilable, X, 1s added
to the normal reaction time. Equation 7 shows the effect of

such contamination on the cumulant functions.

Cr(s) = 7,8 + (Br+€Br)’ (r = 1,2,004)0 (7)

Br is a function of € and the cumulants of X. The effect on
the slope 1s nil, and the effect on the intercept 1s roughly
proportional to g. Most important, the functions remailn
linear.

The cumulants of a distributlon are estlmated wilth-
out bilas by k-statistics, which are functions of the sample
moments;,5 Because sampling error increases rapidly with r,
especially in the presence of contamination, .l decided to
restrict my attentlon to cumulants of orders one to four,
These are capable of providing a good deal of iInteresting
information., If the model 1s correct, each of these cumulants
should increase linearly with s.

In addition, the model requirés certaln relations
to hold among the slopes and among the intercepts of the four
1inear functions. If you refer to Equation 5 -again you will
see that the four slopes provide estimates of the first four
cumulants of the comparison-time distribution, and the four
intercepts provide estimates of the corresponding cumulants
of the base time dlstribution. We therefore have estlmates

of the first four moments of each of these hypothetical
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distributions. If they are in fact moments of a non-degenerate
probability distribution, it can be shown6 that they must

satisty inequalities 8,

2
a

2
a, > 0, a4>a2+a2. (8)
Moreover, since these are hypothetical distributiohs of times,

which cannot be negative, each set of moment estimates must.

also satisfy inequalities 9.

2
7 X Q !
a; >0, az> ~% - ay0y . (9)
al R

Suppose that the model 1s supported by these teéts.
In that case one 1s Jjustified 1in extracting further information
from the moment estimates. First, given a particularlfamily
of distributions, one can ask whether the estimated moments.
can have arlsen from one of 1ts members. One family, for
example, that has been popular among model builders, contailns
the exponenfial distribution and canvolutions of various num-
bers of exponentials with equal or unequal time constants, If
the rypothetical comparison-time distribution 1s one of these,

f'or example, then 1ts moments must satisfy lnequalities 1lla

and llb.7



0 < ag < 263/2 (11a)
2 |
3a
305 +2—a—§_<_ o, < 305 +2.381 a§/3 : (11b)

The second use to which the moment estimates can be
pul 15 in estimating the underlying distributions themselves.
One solution to this problem is provided by the Pearson system
of frequency curves, and the associated method of moments.
Pearson's system was originally cbnceived in order to fit
curves to observed frequency distributiqns. But it was later
used in theoretical statistics to approximate unknown distri-
butions whose lower moments could be calculated. The four-
parameter Pearson system contains many of the well-known
families of distributions, including the normal, beta, expo-
nential and gamma, t, F and Pareto distributions. Estimates
of the first four moments can be used to determine both the
family to which the hypothetical distribution belongs, and
1ts parameter values. And a knowledge of the distribution of
comparison times, for example, may contribute to our under-
standing of the unobservable comparison process.

I have applied these testing and estimation procedures
to the data from three experiments. The experiments had been
designed for other purposes, so the results of this épplication

should not be taken too seriously. On the whole, they appear



promising. I analyzed only the times for negative responses,
that 1, responseé made when the test digit is not one of those
in memory. For each subject in an experiment, and for values
of & of 1,2, and 4. the first four k-statistics were determined.
Thelr values were then averaged over subjects. Figure 1 (page 10)
shows the resulting mean value of each of the first four
k-statistics, as a functicn .of s. The curves_labeled A and C
each represent data'from twelve subjects;rcurves labeled B
represent data from six subjects. The functions appear . to
deviate systematically from linearity. It is a serious weak-
ness of the method that one cannot determine which assumptlon
is at fault - independence, identity of distributlons, or
invariance of contamination effects with the number of elements
in meméry. Among other things, an experiment with a larger
range of s-values is called for. Also, 1t would be pleasant
to have cumulant estimates that are less sénsitive to extreme
observations. In the data presented here, the evidence most
favorable to the model is provided by Experiment A.

Despite the apparent nonlinearity of some of the
mean k-statistics, I proceeded to estimate the moments of the
hypothetical comparison- %nd base-time distributions. Assuming
that the underlying functions were linear, I used a simple
least squares procedure to estimate sldpes and intercepts.
The resulting moment estimates are plotted in Figure 2 (page 10)

Tnere 1s good agreement among the estimates from the three
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Mean values of the first four k-statlistics versus S
in experiments A, B and €. -
Time unit = .01l sec.
(Note that ordlnate scales differ.)
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fEstimated values of four moments
of compayiscn-time and base-time distributions
in experiments A, B and C.
Time unit = ,@1 sec.
(Log scale)
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experiments, at least for the comﬁarisoA—time distribution.
From these figures emerges the fact that whereas 2 change in s
affects the mean reaction time by only a small percentage, it
has a relatively large effect on the higher moments.

gix sets of moments are displayed 1n Figure 2. If
they 1in fact represent moments of time distributions, then
they ought to satisfy inequalities 9 and 10. On testing the
nstimated moments I found that the 1nequali£ies were satisfied
by each of the six sets.

These results encouraged me to procéed further. By
. applying inequalitles lla and 1ib, T found that ncne of théée
sets of moments could have ariseh from an exponential distri-
pution, or from a convolution of ény number of exponentials.
Both the third and fourth moments are too large relative to
the second. This result is especially interesting for
Experiment A. Here, as in many reaction-time experiments, ﬁhe
observed distributions can be fitted reascnably well by gamma
distributions. We thus have an illustration of the fact that
even 1f a gamma distribution appears to arise from a sum of
independent compcnents, these components need not be expo-
nentials or gammas.

Because the data from Experiment A seemed to fit
the model best, I entered the Pearson system with the moments
estimited Frem that éxperiment. The results are shown in

F15HW€S 3 and 4 (page 12). The estimated distribution of the



- 12~

Figure 3
Estimated Comparison-Time Distrlbution
(Experiment A)
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comparison time is a Pearson Type I curve. Thls is essentially

4 beta distribution. In units of .01 second, 1ts range starts
at about 2.5, where the probablility density 13 infinite, and
its mean is about 3.6. The estimated distribution of the base
time 1s a Pearson Type VI curve. This is a generalization of
the F distributicon. In units of .01 second, 1ts range starts
at about 30. Its mode 1s about 32 and 1ts mean is about 36.

In conclusion I would like to underscore two impor-
taqt limitations of these méthods. The first is that they are
applicable only when there is reason to believe that the
experimenEer can ccntrol the number of reactioﬁ—time compcnents,
without also affecting the base time.? The second is that with

these methods, the @ssumption of independence of components

cannet be tested in isclation, but only 1in conjunction with a

distributed.lo
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5Let m =1 S-xr and m_ = L O(—m')r. Then the first four
r n i r n 7)1
:|=| J:

k-statistics of a sample xl, Koy eee X are given in terms

of these moment statistics as follows:

k, = n2 My,
1’ 3 (n-1)(n-2) 73’

2 2
_ (n+1) 3 2
Ky = TeoTIno2 (A3 ™ - EINCEIR
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9If oné(wishes simply té test the assumptlon of indgpendence

of several components this requirement can be weakened.
Consider the case of two components. Suppose that we nave

an experimental situation in which it 1s thought that the
reaction time includes at least two distinct qerial components,
T, and T

1 2’
example, be times for detection and for motor response.

so that RT = Tb + T1 + T?. Ti and ’I'2 might, for

Suppose, further, that we have an operation, 01’ that alters

Tl without affecting T2, and another operation, 02, that

alters T2 without affecting Tl' (Neither of these operations

affects the number of components.) Then we can create four

experimental situations:

' (61 62) RTgg = Tp + Ty F T,
(162) RT10=Tb+Ti+T2
_(61 02) RTy, = Ty + T, + T4
(ol 02) RTy, = Ty + T + T)
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Let Kr(i) pe the rth cumulant of T, and xr(i) + Axr(i) be
the rth cumulant of T,. Also, let K ( ) be the rth cumulant
‘of the observed reaction times in the situation indicated 1n
parenthegses., If T1 and T2 are lndependent as well as belng

additive, then cumulant changes must be additive, as follows:

i

Kr(lo) - Kr(OO) Axr(l)

Kr(Ol) - Kr(OO) Anr(2)

I

and Kr(ll) - Kr(OO) Axr(l) + AKP(E),

forr=1,2,... . ‘These equations imply that, for all r,

WoR

Kr(ll) = Kr(Ol) +-Kr(1o) - Kr(OO)

Assuming only additiviﬁy, this relation must hold for the means
(r = 1); this fact has led to 1ts use as a test of additivity
of reaction-time components (e.g., McMahon, L. E., Grammatical
Analysis as Part of Understanding a Sentence, Unpublished
Ph.D. dissertation, Harvard University, 1963).
lOIf independence is assumed, theq only two adjacent values of s
are needed in order to use the estimation method, ahd the
assumption that co@ponents are identically distributed is not
required. Under ﬁhese circumstances the estimation procedure

1s a strong version of the Helmholtz-Donders subtraction

method.
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APPENDIX

Loci of Sums of Independent Exponential Random
Variables in the Pearson (51,62)—P1ane

Let T = Tl + T2 ee. Tk’ where the T1 are lndependent

and exponentially distributed with density functions

—ti/xi

_ 1
fi(ti) =5 e Sy (A >0, by > 0).

i

The MGF of T, is (1-1,0)7" and the KGF is therefore

o0

’ (A, 6)F i r
; i ; r o
- 108(1-7\19) = | ...—_r_—- = | (I‘_l).' )\1 ‘f'-‘r »

which shows the rth cumulant to be 7r(1) = (r-1)! ki. By the

additivity of cumulants,

: k k
Ky = E;yr(i) = (r-1)! E;%i,
1= : 1=

where Kr is the rth cumulant of T. Thus

Hy = &g = Zliy

2
ue = K2 = Z)\iy
hy = K3 = 22%3,
2 _ o4
Hy = 3u2 = Ky = 62%1,
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and

2
u2 Zk%
B, = 2 - ’
=
(22
N
My Ky _ Z%i
62: ) = 3+‘_§—3+6—_—2—?‘.
Ho - Ko <27\1>

| Equal time constants. If A, AMi=1,2,...,k) then the betas

become

These define a set of points (for k = 1,2,...) in the
(61,62)—plane that fall on the line 52 = 3 + % 61. Correspond-
ing to the entire line (Bl > 0) 1s the family of gamma distri-

butions., Corresponding to the points on the line produced by

integral k,

(51,52) = (439)’ (2’6): (l%:5)’ (1:4%)!

are thdse gamma distributions (special Erlangian distributions)
produced by convolutions of exponentials with equal time
constants. (The 1limit, (0,3), of this sequence of points
corresponds to the normal distribution.)

Unequal time constants. (An exhaustive review of what i1s known

about this situation 1s provided by McGill and Gibbon.3) Gener-

ous bounds on the region occupled by (61,62) are easily provided.
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Conslder Bl 'irst. Its lower bound is zero. To determine 1its

upper bound, one can use the fact that for O ¢ r < s,

\NT S
S r
CHIENCY

(from Theorem 19 - Jensen's Inequality - in Hardy, G. H.,

Littlewuod, J. E., and Polya, G., Inequalitles. Cambridge

University Press, 1959.) This shows that the quantity 51/4 is
bounded above by unity. Thus O < B < M; which is equivalent
to inequality lla. To discover bounds on 62 one can form the
Afo;lowing gquotient:

W2 (8,33 (le{f

6 #

‘ T -
@)

Agaln by Jensen's Inequallty, the right-hand member 1s bounded

above by unity. This gilves 62 <3+ (27/2)% Bl%’ Differentia-
tion shcows that its minimum is attained when all the %i are
equal, in which case its value is 1/k, and (B,,B,) is one of
‘the polnts corresponding to equal time éonstants, so that
62 > 3+ % ﬁl. The result is that 62 must be contalined in the
narrow region between 3 + % B, and 3 + (27/2)% ﬁl%, with
0 < B, < 4, An equivalent statement is provided by 11lb. These
bounds can be improved upon. |

Because central moments are unaffectéd,by a transla-
tion of the density function, the results also hold when the

components are exponentials with "dead time," that is, when

-(t-7, )/
1 i i
fi(ti) ——;e ’ (7\1>0, tZ.Tj_)'



